forked from Raj-08/tensorflow-object-contour-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
65 lines (57 loc) · 2.7 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
DEFAULT_PADDING = 'SAME'
def make_var(name, shape,trainable=True):
'''Creates a new TensorFlow variable.'''
return tf.get_variable(name, shape, trainable=trainable)
def batch_normalization(input, name, is_training, activation_fn=None, scale=True):
with tf.variable_scope(name) as scope:
output = slim.batch_norm(
input,
activation_fn=activation_fn,
is_training=is_training,
updates_collections=None,
scale=scale,
scope=scope)
return output
def conv(input,k_h,k_w,c_o,s_h,s_w,name,relu=True,padding=DEFAULT_PADDING,group=1,biased=True):
c_i = input.get_shape()[-1]
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
with tf.variable_scope(name) as scope:
kernel = make_var('weights', shape=[k_h, k_w, c_i / group, c_o],trainable=True)
if group == 1:
output = convolve(input, kernel)
else:
input_groups = tf.split(3, group, input)
kernel_groups = tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i, k in zip(input_groups, kernel_groups)]
output = tf.concat(3, output_groups)
if biased:
biases = make_var('biases', [c_o])
output = tf.nn.bias_add(output, biases)
if relu:
output = tf.nn.relu(output, name=scope.name)
return output
def relu(input):
return tf.nn.relu(input)
def sigmoid(input, name):
return tf.nn.sigmoid(input, name=name)
def unpool_with_argmax(pool, ind, name = None, ksize=[1, 2, 2, 1]):
with tf.variable_scope(name):
input_shape = pool.get_shape().as_list()
output_shape = (input_shape[0], input_shape[1] * ksize[1], input_shape[2] * ksize[2], input_shape[3])
flat_input_size = np.prod(input_shape)
flat_output_shape = [output_shape[0], output_shape[1] * output_shape[2] * output_shape[3]]
pool_ = tf.reshape(pool, [flat_input_size])
batch_range = tf.reshape(tf.range(output_shape[0], dtype=ind.dtype), shape=[input_shape[0], 1, 1, 1])
b = tf.ones_like(ind) * batch_range
b = tf.reshape(b, [flat_input_size, 1])
ind_ = tf.reshape(ind, [flat_input_size, 1])
ind_ = tf.concat([b, ind_], 1)
ret = tf.scatter_nd(ind_, pool_, shape=flat_output_shape)
ret = tf.reshape(ret, output_shape)
return ret
def dropout(input, name):
#keep = 1 - use_dropout + (use_dropout * keep_prob)
return tf.nn.dropout(input,0.75, name=name)