-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_qesq_v8.py
748 lines (613 loc) · 49 KB
/
app_qesq_v8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# -*- coding: utf-8 -*-
## Used Imports
import os
import io
import zipfile
import random
import torch
import numpy as np
import streamlit as st
import clip
import gc
# import psutil
from io import BytesIO
from PIL import Image
from zipfile import ZipFile
from streamlit import caching
## --------------- FUNCTIONS ---------------
def Predict_1_vs_0(prediccion_probs):
current_result=[]
for i in range(len(prediccion_probs[:,0])):
if prediccion_probs[i,1]>prediccion_probs[i,0]:
current_result.append(1)
else:
current_result.append(0)
return np.array(current_result)
def Predict_0_vs_1(prediccion_probs):
current_result=[]
for i in range(len(prediccion_probs[:,0])):
if prediccion_probs[i,0]>prediccion_probs[i,1]:
current_result.append(1)
else:
current_result.append(0)
return np.array(current_result)
def Predict_1_vs_2(prediccion_probs):
current_result=[]
for i in range(len(prediccion_probs[:,0])):
if prediccion_probs[i,1]>prediccion_probs[i,2]:
current_result.append(1)
else:
current_result.append(0)
return np.array(current_result)
def Predict_bald(prediccion_probs):
current_result=[]
for i in range(len(prediccion_probs[:,0])):
if prediccion_probs[i,1]>prediccion_probs[i,2]:
if prediccion_probs[i,3]>prediccion_probs[i,0]:
current_result.append(1)
else:
current_result.append(0)
else:
if prediccion_probs[i,4]>prediccion_probs[i,0]:
current_result.append(1)
else:
current_result.append(0)
return np.array(current_result)
def Predict_hair_color(prediccion_probs):
current_result=[]
for i in range(len(prediccion_probs[:,0])):
if np.argmax(prediccion_probs[i,:])==0:
current_result.append(1)
else:
current_result.append(0)
return np.array(current_result)
def Token_img(n_images,n_tokens,current_image_files,current_images_discarted,clip_text, clip_model, clip_transform, clip_device):
prediccion_probs=np.zeros((n_images,n_tokens))
for i in range(n_images):
prediccion_probs[i,:]=CLIP_get_probs_only(current_image_files[i], clip_text, clip_model, clip_transform, clip_device)
return prediccion_probs
def CLIP_get_probs_only(img_file, img_txt, img_model, img_transf, img_device):
img_proeprocessed = img_transf(Image.fromarray(img_file)).unsqueeze(0).to(img_device)
img_features = img_model.encode_image(img_proeprocessed)
txt_features = img_model.encode_text(img_txt)
img_logits, img_logits_txt = img_model(img_proeprocessed, img_txt)
image_p=img_logits.detach().numpy()[0]
return np.round(image_p,2)
def Image_discarding(image_current_predictions,current_winner_index,current_images_discarted, n_images, image_files,image_names):
for i in range(len(current_images_discarted)):
if current_images_discarted[i]==0 and image_current_predictions[i]!=image_current_predictions[current_winner_index]:
current_images_discarted[i]=1
n_images2=np.sum(current_images_discarted==0)
image_files2=[]
image_names2=[]
image_current_predictions2=[]
current_index=0
new_winner_index=0
new_index=0
for i in range(n_images):
if current_images_discarted[current_index]==0:
image_files2.append(image_files[current_index])
image_names2.append(image_names[current_index])
image_current_predictions2.append(image_current_predictions[current_index])
if current_index==current_winner_index:
new_winner_index=new_index
new_index+=1
current_index+=1
return image_current_predictions2, np.zeros(n_images2), image_files2, np.array(image_names2), n_images2, new_winner_index
def Show_images(show_results,current_image_files, image_current_predictions,
current_winner_index, n_images):
highlighted_images=[]
for current_index in range(n_images):
if show_results:
current_line_width=4
if image_current_predictions[current_index]==image_current_predictions[current_winner_index]:
current_color=np.array([0,255,0])
else:
current_color=np.array([255,0,0])
else:
current_line_width=2
current_color=np.zeros(3)
highlighted_images.append(Highlight_Image(current_image_files[current_index],current_line_width,current_color))
return np.array(highlighted_images)/255
def Highlight_Image(image,thickness,color):
image_size=240
w,h,c = np.shape(image)
images_separation=image_size-w-thickness*2
image_highlighted=np.zeros([h+thickness*2,image_size,c])+255
image_highlighted[thickness:w+thickness,thickness:w+thickness,:]=image
image_highlighted[:thickness,:w+2*thickness,:]=color
image_highlighted[w+thickness:,:w+2*thickness,:]=color
image_highlighted[:,w+thickness:w+2*thickness,:]=color
image_highlighted[:,:thickness,:]=color
return image_highlighted
def Load_Images_randomly(n_images):
image_files=[]
image_names=[]
image_index=[]
archive = zipfile.ZipFile('guess_who_images.zip', 'r')
listOfFileNames = archive.namelist()
image_index_all=list(range(len(listOfFileNames)))
image_index.append(random.choice(image_index_all))
image_index_all.remove(image_index[0])
current_index=1
while len(image_index)<n_images:
image_index.append(random.choice(image_index_all))
image_index_all.remove(image_index[current_index])
current_index+=1
# Iterate over the file names
for current_index in image_index:
image_current_path=listOfFileNames[current_index]
image_files.append(np.array(Image.open(BytesIO(archive.read(image_current_path)))))
image_names.append(image_current_path[-10:-4])
return image_files, np.array(image_names)
## Tokenization process
def Token_process_query(clip_tokens):
n_tokens=len(clip_tokens)
clip_device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, clip_transform = clip.load("ViT-B/32", device=clip_device, jit=False)
clip_text = clip.tokenize(clip_tokens).to(clip_device)
return n_tokens,clip_tokens,clip_device,clip_model, clip_transform, clip_text
def Show_Info(feature_options):
st.sidebar.markdown('#### Questions List:')
st.sidebar.write(feature_options)
# gives a single float value
# st.sidebar.write(psutil.cpu_percent())
# gives an object with many fields
# st.sidebar.write(psutil.virtual_memory())
# st.sidebar.write(st.session_state['init_data'])
# --------------- CACHE ---------------
# @st.cache(allow_output_mutation=True,max_entries=2,ttl=3600)
def load_data(total_images_number):
path_info='D:/Datasets/Celeba/'
N_images=total_images_number
n_images=N_images
current_querys=['A picture of a person','A picture of a person']
n_tokens,clip_tokens,clip_device,clip_model, clip_transform, clip_text = Token_process_query(current_querys)
current_image_files, current_image_names =Load_Images_randomly(N_images)
Init_Data={
'images_selected':False,
'button_question':False,
'button_query1':False,
'button_query2':False,
'button_winner':False,
'show_results':False,
'start_game':False,
'finished_game':False,
'reload_game':False,
'award':100,
'token_type':0,
'selected_feature':'Ask a Question',
'questions_index':0,
'selected_question':'Are you a MAN?',
'first_question':'Are you a MAN?',
'user_input':'A picture of a person',
'user_input_querys1':'A picture of a person',
'user_input_querys2':'A picture of a person',
'current_querys':current_querys,
'selected_winner':'Winner not selected',
'current_winner_index':-1,
'N_images':N_images,
'n_images':n_images,
'n_tokens':n_tokens,
'current_image_files':current_image_files,
'highlighted_images':current_image_files,
'current_images_discarted':np.zeros((N_images)),
'winner_options':current_image_names,
'current_image_names':current_image_names,
'highlighted_image_names':current_image_names,
'clip_tokens':clip_tokens,
'clip_device':clip_device,
'clip_model':clip_model,
'clip_transform':clip_transform,
'clip_text':clip_text,
'path_info':path_info,
'path_imgs':'D:/Datasets/Celeba/img_celeba/',
'querys_list':['A picture of a man', 'A picture of a woman', 'A picture of an attractive person', 'A picture of a young person',
'A picture of a person with receding hairline', 'A picture of a chubby person ', 'A picture of a person who is smiling', 'A picture of a bald person',
'A picture of a person with black hair', 'A picture of a person with brown hair', 'A picture of a person with blond hair', 'A picture of a person with red hair',
'A picture of a person with gray hair', 'A picture of a person with straight hair', 'A picture of a person with wavy hair',
'A picture of a person who does not wear a beard', 'A picture of a person with mustache', 'A picture of a person with sideburns',
'A picture of a person with goatee', 'A picture of a person with heavy makeup', 'A picture of a person with eyeglasses ',
'A picture of a person with bushy eyebrows', 'A picture of a person with a double chin',
'A picture of a person with high cheekbones', 'A picture of a person with slightly open mouth',
'A picture of a person with narrow eyes', 'A picture of a person with an oval face',
'A picture of a person wiht pale skin', 'A picture of a person with pointy nose', 'A picture of a person with rosy cheeks',
"A picture of a person with five o'clock shadow", 'A picture of a person with arched eyebrows', 'A picture of a person with bags under the eyes',
'A picture of a person with bangs', 'A picture of a person with big lips', 'A picture of a person with big nose',
'A picture of a person with earrings', 'A picture of a person with hat',
'A picture of a person with lipstick', 'A picture of a person with necklace',
'A picture of a person with necktie', 'A blurry picture of a person'
],
'feature_questions':['Are you a MAN?', 'Are you a WOMAN?', 'Are you an ATTRACTIVE person?', 'Are you YOUNG?',
'Are you a person with RECEDING HAIRLINES?', 'Are you a CHUBBY person?', 'Are you SMILING?','Are you BALD?',
'Do you have BLACK HAIR?', 'Do you have BROWN HAIR?', 'Do you have BLOND HAIR?', 'Do you have RED HAIR?',
'Do you have GRAY HAIR?', 'Do you have STRAIGHT HAIR?', 'Do you have WAVY HAIR?',
'Do you have a BEARD?', 'Do you have a MUSTACHE?', 'Do you have SIDEBURNS?',
'Do you have a GOATEE?', 'Do you wear HEAVY MAKEUP?', 'Do you wear EYEGLASSES?',
'Do you have BUSHY EYEBROWS?', 'Do you have a DOUBLE CHIN?',
'Do you have a high CHEECKBONES?', 'Do you have SLIGHTLY OPEN MOUTH?',
'Do you have NARROWED EYES?', 'Do you have an OVAL FACE?',
'Do you have PALE SKIN?', 'Do you have a POINTY NOSE?', 'Do you have ROSY CHEEKS?',
"Do you have FIVE O'CLOCK SHADOW?", 'Do you have ARCHED EYEBROWS?', 'Do you have BUGS UNDER your EYES?',
'Do you have BANGS?', 'Do you have a BIG LIPS?', 'Do you have a BIG NOSE?',
'Are you wearing EARRINGS?', 'Are you wearing a HAT?',
'Are you wearing LIPSTICK?', 'Are you wearing NECKLACE?',
'Are you wearing NECKTIE?', 'Is your image BLURRY?'],
'previous_discarding_images_number':0,
'function_predict':Predict_0_vs_1,
'image_current_probs':np.zeros((N_images,n_tokens)),
'image_current_predictions':np.zeros((N_images))+2
}
return Init_Data
st.set_page_config(
layout="wide",
page_icon='Logo DIMAI.png',
page_title='QuienEsQuien',
initial_sidebar_state="collapsed"
)
## --------------- PROGRAMA ---------------
gc.enable() # garbage collection
## SIDEBAR
st.sidebar.markdown('# OPTIONS PANEL')
## Reset App APP
Reset_App = st.sidebar.button('RESET GAME', key='Reset_App')
## Images number
st.sidebar.markdown('# Number of images')
Total_Images_Number=st.sidebar.number_input('Select the number of images of the game and press "RESET GAME"', min_value=5, max_value=40, value=20,
step=1, format='%d', key='Total_Images_Number', help=None)
## INITIALIZATIONS
Feature_Options=['Ask a Question', 'Create your own query', 'Create your own 2 querys','Select a Winner']
## Load data to play
if 'init_data' not in st.session_state:
st.session_state['init_data'] = load_data(20)
## Title
if st.session_state['init_data']['finished_game']:
st.markdown("<h1 style='text-align:left; float:left; color:blue; margin:0px;'>Guess Who?</h1>", unsafe_allow_html=True)
else:
st.markdown("<h1 style='text-align:left; float:left; color:blue; margin:0px;'>Guess Who?</h1><h2 style='text-align:right; float:right; color:gray; margin:0px;'>score: "+ str(st.session_state['init_data']['award'])+"</h2>", unsafe_allow_html=True)
## GAME
if Reset_App:
st.session_state['init_data'] = load_data(Total_Images_Number)
Restart_App = st.button('GO TO IMAGES SELECTION TO START A NEW GAME', key='Restart_App')
else:
## FINISHED GAME BUTTON TO RELOAD GAME
if st.session_state['init_data']['finished_game']:
Restart_App = st.button('GO TO IMAGES SELECTION TO START NEW GAME', key='Restart_App')
if st.session_state['init_data']['award']==1 or st.session_state['init_data']['award']==-1:
st.markdown("<h1 style='text-align:left; float:left; color:black; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>¡¡¡ FINISHED WITH</h1><h1 style='text-align:left; float:left; color:green; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>"+str(st.session_state['init_data']['award'])+"</h1><h1 style='text-align:left; float:left; color:black; margin:0px;'>POINT !!!</h1>", unsafe_allow_html=True)
else:
st.markdown("<h1 style='text-align:left; float:left; color:black; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>¡¡¡ FINISHED WITH</h1><h1 style='text-align:left; float:left; color:green; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>"+str(st.session_state['init_data']['award'])+"</h1><h1 style='text-align:left; float:left; color:black; margin:0px;'>POINTS !!!</h1>", unsafe_allow_html=True)
else:
st.session_state['init_data']['images_selected']=False
## INITIALIZATION (SELECT FIGURES)
if not st.session_state['init_data']['start_game']:
## Text - select Celeba images
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>1. Choose the images you like.</h2>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin:0px;'>Press the button to randomly modify the selected images.</h3>", unsafe_allow_html=True)
## Button - randomly change Celeba images
Random_Images = st.button('CHANGE IMAGES', key='Random_Images')
if Random_Images:
[ st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_image_names'] ] = Load_Images_randomly(st.session_state['init_data']['N_images'])
st.session_state['init_data']['winner_options']=st.session_state['init_data']['current_image_names']
## Button - start game
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>2. Press the button to start the game.</h2>", unsafe_allow_html=True)
Use_Images = st.button('START GAME', key='Use_Images')
if Use_Images:
## Choose winner and start game
st.session_state['init_data']['current_winner_index']=random.choice(list(range(0,st.session_state['init_data']['N_images'])))
st.session_state['init_data']['start_game']=True
st.session_state['init_data']['images_selected']=True
## RUN GAME
if st.session_state['init_data']['start_game']:
## Text - Select query type (game mode)
if st.session_state['init_data']['images_selected']:
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>3. Select a type of Query to play.</h2>", unsafe_allow_html=True)
else:
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>1. Select a type of Query to play.</h2>", unsafe_allow_html=True)
## SelectBox - Select query type (game mode)
Selected_Feature=st.selectbox('Ask a question from a list, create your query or select a winner:', Feature_Options,
index=0,
key='selected_feature', help=None)
st.session_state['init_data']['selected_feature']=Selected_Feature # Save Info
## SHOW ELEMENTS - QUESTIONS MODE
if Selected_Feature=='Ask a Question':
## Game mode id
st.session_state['init_data']['token_type']=0
## Text - Questions mode
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Select a Question from the list.</h3>", unsafe_allow_html=True)
## SelectBox - Select question
Selected_Question=st.selectbox('Suggested questions:', st.session_state['init_data']['feature_questions'],
index=0,
key='Selected_Question', help=None)
st.session_state['init_data']['selected_question']=Selected_Question # Save Info
## Current question index
if Selected_Question not in st.session_state['init_data']['feature_questions']:
Selected_Question=st.session_state['init_data']['feature_questions'][0]
st.session_state['init_data']['questions_index']=st.session_state['init_data']['feature_questions'].index(Selected_Question)
## Text - Show current question
st.markdown("<h3 style='text-align:center; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>Current Question: </h3><h3 style='text-align:left; float:center; color:green; margin:0px;'>"+Selected_Question+"</h3>", unsafe_allow_html=True)
## Button - Use current question
Check_Question = st.button('USE THIS QUESTION', key='Check_Question')
st.session_state['init_data']['button_question']=Check_Question # Save Info
## Check current question
if st.session_state['init_data']['show_results']:
st.session_state['init_data']['show_results']=False
else:
if Check_Question:
if Selected_Question=='Are you bald?':
st.session_state['init_data']['current_querys']=['A picture of a person','A picture of a man','A picture of a woman',
'A picture of a yes bald man','A picture of a bald person']
st.session_state['init_data']['function_predict']=Predict_bald
elif Selected_Question=='Do you have BLACK HAIR?':
st.session_state['init_data']['current_querys']=['A picture of a person who is black-haired',
'A picture of a person who is tawny-haired',
'A picture of a person who is blond-haired',
'A picture of a person who is gray-haired',
'A picture of a person who is red-haired',
'A picture of a person who is totally bald']
st.session_state['init_data']['function_predict']=Predict_hair_color
elif Selected_Question=='Do you have BROWN HAIR?':
st.session_state['init_data']['current_querys']=['A picture of a person who is tawny-haired',
'A picture of a person who is black-haired',
'A picture of a person who is blond-haired',
'A picture of a person who is gray-haired',
'A picture of a person who is red-haired',
'A picture of a person who is totally bald']
st.session_state['init_data']['function_predict']=Predict_hair_color
elif Selected_Question=='Do you have BLOND HAIR?':
st.session_state['init_data']['current_querys']=['A picture of a person who is blond-haired',
'A picture of a person who is tawny-haired',
'A picture of a person who is black-haired',
'A picture of a person who is gray-haired',
'A picture of a person who is red-haired',
'A picture of a person who is totally bald']
st.session_state['init_data']['function_predict']=Predict_hair_color
elif Selected_Question=='Do you have RED HAIR?':
st.session_state['init_data']['current_querys']=['A picture of a person who is red-haired',
'A picture of a person who is tawny-haired',
'A picture of a person who is blond-haired',
'A picture of a person who is gray-haired',
'A picture of a person who is black-haired',
'A picture of a person who is totally bald']
st.session_state['init_data']['function_predict']=Predict_hair_color
elif Selected_Question=='Do you have GRAY HAIR?':
st.session_state['init_data']['current_querys']=['A picture of a person who is gray-haired',
'A picture of a person who is tawny-haired',
'A picture of a person who is blond-haired',
'A picture of a person who is black-haired',
'A picture of a person who is red-haired',
'A picture of a person who is totally bald']
st.session_state['init_data']['function_predict']=Predict_hair_color
elif Selected_Question=='Are you a man?':
st.session_state['init_data']['current_querys']=['A picture of a man','A picture of a woman']
st.session_state['init_data']['function_predict']=Predict_0_vs_1
elif Selected_Question=='Are you a woman?':
st.session_state['init_data']['current_querys']=['A picture of a woman','A picture of a man']
st.session_state['init_data']['function_predict']=Predict_0_vs_1
elif Selected_Question=='Do you have a beard?':
st.session_state['init_data']['current_querys']=['A picture of a person with beard','A picture of a person']
st.session_state['init_data']['function_predict']=Predict_0_vs_1
elif Selected_Question=='Are you YOUNG?':
st.session_state['init_data']['current_querys']=['A picture of a young person','A picture of an aged person']
st.session_state['init_data']['function_predict']=Predict_0_vs_1
elif not st.session_state['init_data']['show_results']:
st.session_state['init_data']['current_querys']=[st.session_state['init_data']['querys_list'][st.session_state['init_data']['questions_index']],'A picture of a person']
st.session_state['init_data']['function_predict']=Predict_0_vs_1
[ st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['clip_tokens'],
st.session_state['init_data']['clip_device'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_text'] ]=Token_process_query(st.session_state['init_data']['current_querys'])
st.session_state['init_data']['image_current_probs'] = Token_img(st.session_state['init_data']['n_images'],
st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_images_discarted'],
st.session_state['init_data']['clip_text'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_device'])
st.session_state['init_data']['image_current_predictions']=st.session_state['init_data']['function_predict'](st.session_state['init_data']['image_current_probs'])
st.session_state['init_data']['show_results']=True
## SHOW ELEMENTS - 1 QUERY MOD
if Selected_Feature=='Create your own query':
## Game mode id
st.session_state['init_data']['token_type']=-1
## Text - Query mode
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Write your own query and press the button.</h3>", unsafe_allow_html=True)
## TextInput - Select query
User_Input = st.text_input('It is recommended to use a text like: "A picture of a ... person" or "A picture of a person ..." (CLIP will check -> "Your query" vs "A picture of a person" )', 'A picture of a person', key='User_Input', help=None)
st.session_state['init_data']['user_input']=User_Input # Save Info
## Text - Show current query
st.markdown("<h3 style='text-align:center; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>Current Query: </h3><h3 style='text-align:left; float:center; color:green; margin:0px;'>"+User_Input+"</h3>", unsafe_allow_html=True)
## Button - Use current query
Check_Query = st.button('USE MY OWN QUERY', key='Check_Query')
st.session_state['init_data']['button_query1']=Check_Query # Save Info
## Check current question
if st.session_state['init_data']['show_results']:
st.session_state['init_data']['show_results']=False
else:
if Check_Query:
if User_Input!='A picture of a person':
st.session_state['init_data']['current_querys']=['A Picture of a person',User_Input]
st.session_state['init_data']['function_predict']=Predict_1_vs_0
[ st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['clip_tokens'],
st.session_state['init_data']['clip_device'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_text'] ]=Token_process_query(st.session_state['init_data']['current_querys'])
st.session_state['init_data']['image_current_probs'] = Token_img(st.session_state['init_data']['n_images'],
st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_images_discarted'],
st.session_state['init_data']['clip_text'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_device'])
st.session_state['init_data']['image_current_predictions']=st.session_state['init_data']['function_predict'](st.session_state['init_data']['image_current_probs'])
st.session_state['init_data']['show_results']=True
else:
st.markdown("<h3 style='text-align:left; float:left; color:red; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Your query must be different of 'A picture of a person'.</h3>", unsafe_allow_html=True)
## SHOW ELEMENTS - 2 QUERYS MODE
if Selected_Feature=='Create your own 2 querys':
## Game mode id
st.session_state['init_data']['token_type']=-2
## Text - Querys mode
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Write your own querys by introducing 2 opposite descriptions.</h3>", unsafe_allow_html=True)
## SelectBox - Select querys
User_Input_Querys1 = st.text_input('Write your "True" query:', 'A picture of a person',
key='User_Input_Querys1', help=None)
User_Input_Querys2 = st.text_input('Write your "False" query:', 'A picture of a person',
key='User_Input_Querys2', help=None)
st.session_state['init_data']['user_input_querys1']=User_Input_Querys1 # Save Info
st.session_state['init_data']['user_input_querys2']=User_Input_Querys2 # Save Info
## Text - Show current querys
st.markdown("<h3 style='text-align:center; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>Current Querys: </h3><h3 style='text-align:left; float:center; color:green; margin:0px;'>"+User_Input_Querys1+' vs '+User_Input_Querys2+"</h3>", unsafe_allow_html=True)
## Button - Use current querys
Check_Querys = st.button('USE MY OWN QUERYS', key='Check_Querys')
st.session_state['init_data']['button_query2']=Check_Querys # Save Info
## Check current querys
if st.session_state['init_data']['show_results']:
st.session_state['init_data']['show_results']=False
else:
if Check_Querys:
if User_Input_Querys1!=User_Input_Querys2:
st.session_state['init_data']['current_querys']=[User_Input_Querys1,User_Input_Querys2]
st.session_state['init_data']['function_predict']=Predict_0_vs_1
[ st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['clip_tokens'],
st.session_state['init_data']['clip_device'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_text'] ]=Token_process_query(st.session_state['init_data']['current_querys'])
st.session_state['init_data']['image_current_probs'] = Token_img(st.session_state['init_data']['n_images'],
st.session_state['init_data']['n_tokens'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_images_discarted'],
st.session_state['init_data']['clip_text'],
st.session_state['init_data']['clip_model'],
st.session_state['init_data']['clip_transform'],
st.session_state['init_data']['clip_device'])
st.session_state['init_data']['image_current_predictions']=st.session_state['init_data']['function_predict'](st.session_state['init_data']['image_current_probs'])
st.session_state['init_data']['show_results']=True
else:
st.markdown("<h3 style='text-align:left; float:left; color:red; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Your two own querys must be different.</h3>", unsafe_allow_html=True)
## SHOW ELEMENTS - WINNER MODE
if Selected_Feature=='Select a Winner':
## Game mode id
st.session_state['init_data']['token_type']=-3
## Text - Winner mode
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Select a Winner picture name.</h3>", unsafe_allow_html=True)
## SelectBox - Select winner
# st.session_state['init_data']['winner_options']=['Winner not selected']
# st.session_state['init_data']['winner_options'].extend(st.session_state['init_data']['current_image_names'])
# if st.session_state['init_data']['selected_winner'] not in st.session_state['init_data']['winner_options']:
# st.write(st.session_state['init_data']['selected_winner'])
# st.write(st.session_state['init_data']['winner_options'])
Selected_Winner=st.selectbox('If you are inspired, Select a Winner image directly:', st.session_state['init_data']['winner_options'],
index=0, key='Selected_Winner', help=None)
st.session_state['init_data']['selected_winner']=Selected_Winner # Save Info
## Text - Show current winner
st.markdown("<h3 style='text-align:center; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>Current Winner: </h3><h3 style='text-align:left; float:center; color:green; margin:0px;'>"+Selected_Winner+"</h3>", unsafe_allow_html=True)
## Button - Use current winner
Check_Winner = st.button('CHECK THIS WINNER', key='Check_Winner')
st.session_state['init_data']['button_winner']=Check_Winner # Save Info
## Check current winner
if st.session_state['init_data']['show_results']:
st.session_state['init_data']['show_results']=False
else:
if Check_Winner:
if Selected_Winner in st.session_state['init_data']['current_image_names']:
st.session_state['init_data']['selected_winner_index']=np.where(Selected_Winner==st.session_state['init_data']['current_image_names'])[0]
st.session_state['init_data']['image_current_predictions']=np.zeros(st.session_state['init_data']['n_images'])
st.session_state['init_data']['image_current_predictions'][st.session_state['init_data']['selected_winner_index']]=1
st.session_state['init_data']['show_results']=True
# Delete Winner elements
# del st.session_state['Selected_Winner']
else:
st.markdown("<h3 style='text-align:left; float:left; color:red; margin-left:0px; margin-right:0px; margin-top:15px; margin-bottom:-10px;'>Your must select a not discarded picture.</h3>", unsafe_allow_html=True)
## ACTIONS SHOWING RESULTS
if st.session_state['init_data']['show_results']:
## Continue game
if not np.sum(st.session_state['init_data']['current_images_discarted']==0)==1:
if st.session_state['init_data']['images_selected']:
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>4. Press the button to continue.</h2>", unsafe_allow_html=True)
else:
st.markdown("<h2 style='text-align:left; float:left; color:black; margin:0px;'>2. Press the button to continue.</h2>", unsafe_allow_html=True)
## Button - Next query
Next_Query=st.button('NEXT QUERY', key='Next_Query')
## Show current results
if st.session_state['init_data']['token_type']==0:
if st.session_state['init_data']['image_current_predictions'][st.session_state['init_data']['current_winner_index']]:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>"+st.session_state['init_data']['selected_question']+"</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>YES</h3>", unsafe_allow_html=True)
else:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>"+st.session_state['init_data']['selected_question']+"</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>NO</h3>", unsafe_allow_html=True)
if st.session_state['init_data']['token_type']==-1:
if st.session_state['init_data']['image_current_predictions'][st.session_state['init_data']['current_winner_index']]:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>"+st.session_state['init_data']['user_input']+"</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>TRUE</h3>", unsafe_allow_html=True)
else:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>"+st.session_state['init_data']['user_input']+"</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>FALSE</h3>", unsafe_allow_html=True)
if st.session_state['init_data']['token_type']==-2:
if st.session_state['init_data']['image_current_predictions'][st.session_state['init_data']['current_winner_index']]:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>The most accurate query is:</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>"+st.session_state['init_data']['user_input_querys1']+"</h3>", unsafe_allow_html=True)
else:
st.markdown("<h3 style='text-align:left; float:left; color:blue; margin-left:0px; margin-right:25px; margin-top:0px; margin-bottom:0px;'>The most accurate query is:</h3><h3 style='text-align:left; float:left; color:green; margin:0px;'>"+st.session_state['init_data']['user_input_querys2']+"</h3>", unsafe_allow_html=True)
if st.session_state['init_data']['token_type']==-3:
if not st.session_state['init_data']['selected_winner']==st.session_state['init_data']['current_image_names'][st.session_state['init_data']['current_winner_index']]:
st.markdown("<h3 style='text-align:left; float:left; color:gray; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>The winner picture is not:</h3><h3 style='text-align:left; float:center; color:red; margin:0px;'>"+st.session_state['init_data']['selected_winner']+"</h3>", unsafe_allow_html=True)
## CREATE IMAGES TO SHOW
st.session_state['init_data']['highlighted_images']=Show_images(st.session_state['init_data']['show_results'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['image_current_predictions'],
st.session_state['init_data']['current_winner_index'],
st.session_state['init_data']['n_images'])
st.session_state['init_data']['highlighted_image_names']=st.session_state['init_data']['current_image_names']
## APPLY DISCARDING
if st.session_state['init_data']['show_results']:
st.session_state['init_data']['previous_discarding_images_number']=st.session_state['init_data']['n_images']
[ st.session_state['init_data']['image_current_predictions'],
st.session_state['init_data']['current_images_discarted'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_image_names'],
st.session_state['init_data']['n_images'],
st.session_state['init_data']['current_winner_index'] ] = Image_discarding(st.session_state['init_data']['image_current_predictions'],
st.session_state['init_data']['current_winner_index'],
st.session_state['init_data']['current_images_discarted'],
st.session_state['init_data']['n_images'],
st.session_state['init_data']['current_image_files'],
st.session_state['init_data']['current_image_names'])
## penalty - game not finished
if st.session_state['init_data']['n_images']>1:
st.session_state['init_data']['award']=st.session_state['init_data']['award']-st.session_state['init_data']['n_images']
## penalty - "select winner" option used
if st.session_state['init_data']['token_type']==-3:
st.session_state['init_data']['award']=st.session_state['init_data']['award']-1-(st.session_state['init_data']['N_images']-st.session_state['init_data']['previous_discarding_images_number'])
## penalty - no image is discarted
if st.session_state['init_data']['previous_discarding_images_number']==st.session_state['init_data']['n_images']:
st.session_state['init_data']['award']=st.session_state['init_data']['award']-5
## SHOW FINAL RESULTS
if st.session_state['init_data']['finished_game']:
st.session_state['init_data']['reload_game']=True
else:
## CHECK FINISHED GAME
if np.sum(st.session_state['init_data']['current_images_discarted']==0)==1 and not st.session_state['init_data']['finished_game']:
st.session_state['init_data']['finished_game']=True
st.markdown("<h1 style='text-align:left; float:left; color:black; margin-left:0px; margin-right:15px; margin-top:0px; margin-bottom:0px;'>You found the Winner picture:</h1><h1 style='text-align:left; float:left; color:green; margin:0px;'>"+st.session_state['init_data']['current_image_names'][st.session_state['init_data']['current_winner_index']]+"</h1>", unsafe_allow_html=True)
Finsih_Game = st.button('FINISH GAME', key='Finsih_Game')
## SHOW CURRENT IMAGES
st.image(st.session_state['init_data']['highlighted_images'], use_column_width=False, caption=st.session_state['init_data']['highlighted_image_names'])
## RELOAD GAME
if st.session_state['init_data']['reload_game']:
st.session_state['init_data'] = load_data(Total_Images_Number)
## SHOW EXTRA INFO
Show_Info(st.session_state['init_data']['feature_questions'])
## CLEAR RESOURCES
gc.collect()
caching.clear_cache()
torch.cuda.empty_cache()
## gives a single float value
# st.sidebar.write(psutil.cpu_percent())
## gives an object with many fields
# st.sidebar.write(psutil.virtual_memory())