-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathl2norm.py
27 lines (25 loc) · 898 Bytes
/
l2norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd import Variable
import torch.nn.init as init
import Config
class L2Norm(nn.Module):
def __init__(self,n_channels, scale):
super(L2Norm,self).__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
if Config.use_cuda:
self.weight = nn.Parameter(torch.Tensor(self.n_channels).cuda())
else:
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.weight,self.gamma)
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt()+self.eps
#x /= norm
x = torch.div(x,norm)
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
return out