MLRunner is the entry point to Angel algorithms. It defines the standard process of starting up an Angel application, and encapsulates AngelClient.
- Starts Angel PS, loads and stores model, and starts the default implementations of processes such as
Task
- In general, tha application can directly use the functions above
-
train
- Definition:
train(conf: Configuration)
- Purpose: starts up Angel app's model training process
- Parameters: conf: configures Angel job and algorithm settings
- Return value: none
- Definition:
-
train (default implementation)
-
Definition:
train(conf: Configuration, model: MLModel, taskClass: Class[_ <: BaseTask[_, _, _]]): Unit
-
Purpose: starts Angel app's model training process. This method encapsulates specific Angel PS/worker starting-up and model-loading/saving processes; can be referenced by subclasses directly
-
Parameters
- conf: configures Angel job and algorithm
- model: MLModel, the machine-learning model/algorithm
- taskClass: Class[_ <: TrainTask[_, _, _]]
Task
class in the algorithm's process
-
Return value: none
-
-
incTrain
- Definition:
incTrain(conf: Configuration)
- Purpose: updates an existing model using incremental training
- Parameters: conf: configures Angel job and algorithm
- Return value: none
- Definition:
-
predict
- Definition:
predict(conf: Configuration)
- Purpose: starts Angel app and computes model prediction
- Parameters: conf: configures Angel job
- Return value: none
- Definition:
-
predict (default implementation)
- Definition:
predict(conf: Configuration, model: MLModel, taskClass: Class[_ <: PredictTask[_, _, _]]): Unit
- Purpose: starts Angel app and updates an existing model using incremental training. This method encapsulates specific Angel PS/worker starting-up and model-loading/saving processes; can be referenced by subclasses directly
- Parameters: conf: configures Angel job
- Return value: none
- Definition: