Skip to content

Latest commit

 

History

History
51 lines (40 loc) · 3.03 KB

hindex_sona.md

File metadata and controls

51 lines (40 loc) · 3.03 KB

H-Index

1. 算法介绍

HIndex算法是计算一个节点h-index指数的算法。在一个graph中,一个节点的h-index值为h时,表示该节点至少有h个邻居的度大于或等于h,通常来说,h-index值越高,表明该节点的影响力越大,适用于社交网络中关键节点挖掘等场景。

2. 运行

算法IO参数

  • input:输入,hdfs路径,无向图,不带权。每行表示一条边: srcId 分隔符 dstId
  • output: 输出,hdfs路径。每行表示一个顶点及其对应的hindex值:nodeId tab hindex值 tab gindex值 tab windex值
  • sep: 分隔符,输入中每条边的起始顶点、目标顶点之间的分隔符: tab, 空格

算法参数

  • partitionNum:数据分区数,spark rdd数据的分区数量
  • psPartitionNum:参数服务器上模型的分区数量
  • useBalancePartition:参数服务器对输入数据节点存储划分是否均衡分区,如果输入节点的索引不是均匀的话建议选择是
  • storageLevel:RDD存储级别,DISK_ONLY/MEMORY_ONLY/MEMORY_AND_DISK

资源参数

  • ps个数和内存大小:ps.instance与ps.memory的乘积是ps总的配置内存。为了保证Angel不挂掉,需要配置ps上数据存储量大小两倍左右的内存。对于HIndex来说,ps上放置的是(nodeId,degree)的key-value结构的vector,数据类型是(Long,Int),据此可以估算不同规模的Graph输入下需要配置的ps内存大小
  • Spark的资源配置:num-executors与executor-memory的乘积是executors总的配置内存,最好能存下2倍的输入数据。 如果内存紧张,1倍也是可以接受的,但是相对会慢一点。 比如说100亿的边集大概有600G大小, 50G * 20 的配置是足够的。 在资源实在紧张的情况下, 尝试加大分区数目!

任务提交示例

input=hdfs://my-hdfs/data
output=hdfs://my-hdfs/output

source ./spark-on-angel-env.sh
$SPARK_HOME/bin/spark-submit \
  --master yarn-cluster\
  --conf spark.ps.instances=1 \
  --conf spark.ps.cores=1 \
  --conf spark.ps.jars=$SONA_ANGEL_JARS \
  --conf spark.ps.memory=10g \
  --name "hindex angel" \
  --jars $SONA_SPARK_JARS  \
  --driver-memory 5g \
  --num-executors 1 \
  --executor-cores 4 \
  --executor-memory 10g \
  --class org.apache.spark.angel.examples.graph.HIndexExample \
  ../lib/spark-on-angel-examples-3.1.0.jar
  input:$input output:$output sep:tab storageLevel:MEMORY_ONLY useBalancePartition:true \
  partitionNum:4 psPartitionNum:1

常见问题

  • 在差不多10min的时候,任务挂掉: 很可能的原因是angel申请不到资源!由于HIndex基于Spark On Angel开发,实际上涉及到Spark和Angel两个系统,在向Yarn申请资源时是独立进行的。 在Spark任务拉起之后,由Spark向Yarn提交Angel的任务,如果不能在给定时间内申请到资源,就会报超时错误,任务挂掉! 解决方案是: 1)确认资源池有足够的资源 2) 添加spakr conf: spark.hadoop.angel.am.appstate.timeout.ms=xxx 调大超时时间,默认值为600000,也就是10分钟