forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net.py
117 lines (105 loc) · 4.92 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class DSSMLayer(nn.Layer):
def __init__(self, trigram_d, neg_num, slice_end, hidden_layers,
hidden_acts):
super(DSSMLayer, self).__init__()
self.hidden_layers = [trigram_d] + hidden_layers
self.hidden_acts = hidden_acts
self.slice_end = slice_end
self._query_layers = []
for i in range(len(self.hidden_layers) - 1):
linear = paddle.nn.Linear(
in_features=self.hidden_layers[i],
out_features=self.hidden_layers[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])))
self.add_sublayer('query_linear_%d' % i, linear)
self._query_layers.append(linear)
if self.hidden_acts[i] == "relu":
act = paddle.nn.ReLU()
self.add_sublayer('query_act_%d' % i, act)
self._query_layers.append(act)
self._pos_layers = []
for i in range(len(self.hidden_layers) - 1):
linear = paddle.nn.Linear(
in_features=self.hidden_layers[i],
out_features=self.hidden_layers[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])))
self.add_sublayer('pos_linear_%d' % i, linear)
self._pos_layers.append(linear)
if self.hidden_acts[i] == "relu":
act = paddle.nn.ReLU()
self.add_sublayer('pos_act_%d' % i, act)
self._pos_layers.append(act)
self._neg_layers = []
for i in range(len(self.hidden_layers) - 1):
linear = paddle.nn.Linear(
in_features=self.hidden_layers[i],
out_features=self.hidden_layers[i + 1],
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])),
bias_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.XavierNormal(
fan_in=self.hidden_layers[i],
fan_out=self.hidden_layers[i + 1])))
self.add_sublayer('neg_linear_%d' % i, linear)
self._neg_layers.append(linear)
if self.hidden_acts[i] == "relu":
act = paddle.nn.ReLU()
self.add_sublayer('neg_act_%d' % i, act)
self._neg_layers.append(act)
def forward(self, input_data, is_infer):
query_fc = input_data[0]
for n_layer in self._query_layers:
query_fc = n_layer(query_fc)
doc_pos_fc = input_data[1]
for n_layer in self._pos_layers:
doc_pos_fc = n_layer(doc_pos_fc)
R_Q_D_p = F.cosine_similarity(
query_fc, doc_pos_fc, axis=1, eps=0).reshape([-1, 1])
if is_infer:
return R_Q_D_p, paddle.ones(shape=[self.slice_end, 1])
R_Q_D_ns = []
for i in range(len(input_data) - 2):
doc_neg_fc_i = input_data[i + 2]
for n_layer in self._neg_layers:
doc_neg_fc_i = n_layer(doc_neg_fc_i)
R_Q_D_n = F.cosine_similarity(
query_fc, doc_neg_fc_i, axis=1, eps=0).reshape([-1, 1])
R_Q_D_ns.append(R_Q_D_n)
concat_Rs = paddle.concat(x=[R_Q_D_p] + R_Q_D_ns, axis=1)
prob = F.softmax(concat_Rs, axis=1)
hit_prob = paddle.slice(
prob, axes=[0, 1], starts=[0, 0], ends=[self.slice_end, -1])
return R_Q_D_p, hit_prob