forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dygraph_model.py
93 lines (80 loc) · 3.69 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
trigram_d = config.get('hyper_parameters.trigram_d', None)
neg_num = config.get('hyper_parameters.neg_num', None)
slice_end = config.get('hyper_parameters.slice_end', None)
fc_sizes = config.get('hyper_parameters.fc_sizes', None)
fc_acts = config.get('hyper_parameters.fc_acts', None)
DSSM_model = net.DSSMLayer(trigram_d, neg_num, slice_end, fc_sizes,
fc_acts)
return DSSM_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds_train(self, batch_data, trigram_d):
query = paddle.to_tensor(batch_data[0].numpy().astype('float32')
.reshape(-1, trigram_d))
doc_pos = paddle.to_tensor(batch_data[1].numpy().astype('float32')
.reshape(-1, trigram_d))
doc_negs = []
for ele in batch_data[2:]:
doc_negs.append(
paddle.to_tensor(ele.numpy().astype('float32').reshape(
-1, trigram_d)))
return [query, doc_pos] + doc_negs
def create_feeds_infer(self, batch_data, trigram_d):
query = paddle.to_tensor(batch_data[0].numpy().astype('float32')
.reshape(-1, trigram_d))
doc_pos = paddle.to_tensor(batch_data[1].numpy().astype('float32')
.reshape(-1, trigram_d))
return [query, doc_pos]
# define loss function by predicts and label
def create_loss(self, hit_prob):
loss = -paddle.sum(paddle.log(hit_prob), axis=-1)
avg_cost = paddle.mean(x=loss)
return avg_cost
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = []
metrics_list = []
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
trigram_d = config.get('hyper_parameters.trigram_d', None)
inputs = self.create_feeds_train(batch_data, trigram_d)
R_Q_D_p, hit_prob = dy_model.forward(inputs, False)
loss = self.create_loss(hit_prob)
# update metrics
print_dict = {"loss": loss}
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
trigram_d = config.get('hyper_parameters.trigram_d', None)
inputs = self.create_feeds_infer(batch_data, trigram_d)
R_Q_D_p, hit_prob = dy_model.forward(inputs, True)
# update metrics
print_dict = {"query_doc_sim": R_Q_D_p}
return metrics_list, print_dict