-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmisc.py
227 lines (196 loc) · 7.56 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import cv2
import os
import shutil
import pickle as pkl
import time
import numpy as np
import hashlib
from IPython import embed
class Logger(object):
def __init__(self):
self._logger = None
def init(self, logdir, name='log'):
if self._logger is None:
import logging
if not os.path.exists(logdir):
os.makedirs(logdir)
log_file = os.path.join(logdir, name)
if os.path.exists(log_file):
os.remove(log_file)
self._logger = logging.getLogger()
self._logger.setLevel('INFO')
fh = logging.FileHandler(log_file)
ch = logging.StreamHandler()
self._logger.addHandler(fh)
self._logger.addHandler(ch)
def info(self, str_info):
self.init('/tmp', 'tmp.log')
self._logger.info(str_info)
logger = Logger()
print = logger.info
def ensure_dir(path, erase=False):
if os.path.exists(path) and erase:
print("Removing old folder {}".format(path))
shutil.rmtree(path)
if not os.path.exists(path):
print("Creating folder {}".format(path))
os.makedirs(path)
def load_pickle(path):
begin_st = time.time()
with open(path, 'rb') as f:
print("Loading pickle object from {}".format(path))
v = pkl.load(f)
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return v
def dump_pickle(obj, path):
with open(path, 'wb') as f:
print("Dumping pickle object to {}".format(path))
pkl.dump(obj, f, protocol=pkl.HIGHEST_PROTOCOL)
def auto_select_gpu(mem_bound=500, utility_bound=0, gpus=(0, 1, 2, 3, 4, 5, 6, 7), num_gpu=1, selected_gpus=None):
import sys
import os
import subprocess
import re
import time
import numpy as np
if 'CUDA_VISIBLE_DEVCIES' in os.environ:
sys.exit(0)
if selected_gpus is None:
mem_trace = []
utility_trace = []
for i in range(5): # sample 5 times
info = subprocess.check_output('nvidia-smi', shell=True).decode('utf-8')
mem = [int(s[:-5]) for s in re.compile('\d+MiB\s/').findall(info)]
utility = [int(re.compile('\d+').findall(s)[0]) for s in re.compile('\d+%\s+Default').findall(info)]
mem_trace.append(mem)
utility_trace.append(utility)
time.sleep(0.1)
mem = np.mean(mem_trace, axis=0)
utility = np.mean(utility_trace, axis=0)
assert(len(mem) == len(utility))
nGPU = len(utility)
ideal_gpus = [i for i in range(nGPU) if mem[i] <= mem_bound and utility[i] <= utility_bound and i in gpus]
ideal_gpus = [0]
if len(ideal_gpus) < num_gpu:
print("No sufficient resource, available: {}, require {} gpu".format(ideal_gpus, num_gpu))
sys.exit(0)
else:
selected_gpus = list(map(str, ideal_gpus[:num_gpu]))
else:
selected_gpus = selected_gpus.split(',')
print("Setting GPU: {}".format(selected_gpus))
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(selected_gpus)
return selected_gpus
def expand_user(path):
return os.path.abspath(os.path.expanduser(path))
def model_snapshot(model, new_file, old_file=None, verbose=False):
from collections import OrderedDict
import torch
if isinstance(model, torch.nn.DataParallel):
model = model.module
if old_file and os.path.exists(expand_user(old_file)):
if verbose:
print("Removing old model {}".format(expand_user(old_file)))
os.remove(expand_user(old_file))
if verbose:
print("Saving model to {}".format(expand_user(new_file)))
state_dict = OrderedDict()
for k, v in model.state_dict().items():
if v.is_cuda:
v = v.cpu()
state_dict[k] = v
torch.save(state_dict, expand_user(new_file))
def load_lmdb(lmdb_file, n_records=None):
import lmdb
import numpy as np
lmdb_file = expand_user(lmdb_file)
if os.path.exists(lmdb_file):
data = []
env = lmdb.open(lmdb_file, readonly=True, max_readers=512)
with env.begin() as txn:
cursor = txn.cursor()
begin_st = time.time()
print("Loading lmdb file {} into memory".format(lmdb_file))
for key, value in cursor:
_, target, _ = key.decode('ascii').split(':')
target = int(target)
img = cv2.imdecode(np.fromstring(value, np.uint8), cv2.IMREAD_COLOR)
data.append((img, target))
if n_records is not None and len(data) >= n_records:
break
env.close()
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return data
else:
print("Not found lmdb file".format(lmdb_file))
def str2img(str_b):
return cv2.imdecode(np.fromstring(str_b, np.uint8), cv2.IMREAD_COLOR)
def img2str(img):
return cv2.imencode('.jpg', img)[1].tostring()
def md5(s):
m = hashlib.md5()
m.update(s)
return m.hexdigest()
def eval_model(model, ds, n_sample=None, ngpu=1, is_imagenet=False):
import tqdm
import torch
from torch import nn
from torch.autograd import Variable
class ModelWrapper(nn.Module):
def __init__(self, model):
super(ModelWrapper, self).__init__()
self.model = model
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
def forward(self, input):
input.data.div_(255.)
input.data[:, 0, :, :].sub_(self.mean[0]).div_(self.std[0])
input.data[:, 1, :, :].sub_(self.mean[1]).div_(self.std[1])
input.data[:, 2, :, :].sub_(self.mean[2]).div_(self.std[2])
return self.model(input)
correct1, correct5 = 0, 0
n_passed = 0
if is_imagenet:
model = ModelWrapper(model)
model = model.eval()
model = torch.nn.DataParallel(model, device_ids=range(ngpu)).cuda()
n_sample = len(ds) if n_sample is None else n_sample
for idx, (data, target) in enumerate(tqdm.tqdm(ds, total=n_sample)):
n_passed += len(data)
data = Variable(torch.FloatTensor(data)).cuda()
indx_target = torch.LongTensor(target)
output = model(data)
bs = output.size(0)
idx_pred = output.data.sort(1, descending=True)[1]
idx_gt1 = indx_target.expand(1, bs).transpose_(0, 1)
idx_gt5 = idx_gt1.expand(bs, 5)
correct1 += idx_pred[:, :1].cpu().eq(idx_gt1).sum()
correct5 += idx_pred[:, :5].cpu().eq(idx_gt5).sum()
if idx >= n_sample - 1:
break
acc1 = correct1 * 1.0 / n_passed
acc5 = correct5 * 1.0 / n_passed
return acc1, acc5
def load_state_dict(model, model_urls, model_root):
from torch.utils import model_zoo
from torch import nn
import re
from collections import OrderedDict
own_state_old = model.state_dict()
own_state = OrderedDict() # remove all 'group' string
for k, v in own_state_old.items():
k = re.sub('group\d+\.', '', k)
own_state[k] = v
state_dict = model_zoo.load_url(model_urls, model_root)
for name, param in state_dict.items():
if name not in own_state:
print(own_state.keys())
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))