-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_match.py
265 lines (239 loc) · 14.3 KB
/
train_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import sys
import os
import random
import pickle
import cPickle
import argparse
from time import time
import numpy as np
from sklearn.externals import joblib
from sklearn.metrics import f1_score
from load_data import ProcessData, load_data_file, ProcessHierData
from label_bin import CustomLabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics.pairwise import pairwise_distances
from metrics import rak, pak
def main():
parser = argparse.ArgumentParser(description='Train Neural Network.')
parser.add_argument('--num_epochs', type=int, default=25, help='Number of updates to make.')
parser.add_argument('--num_models', type=int, default=5, help='Number of updates to make.')
parser.add_argument('--word_vectors', default=None, help='Word vecotors filepath.')
parser.add_argument('--labels', default='/home/amri228/naacl_2018/data/mimic2/all_labels.txt',
help='All Labels.')
parser.add_argument('--checkpoint_dir', default='./experiments/exp1/checkpoints/',
help='Checkpoint directory.')
parser.add_argument('--checkpoint_name', default='checkpoint',
help='Checkpoint File Name.')
parser.add_argument('--hidden_state', type=int, default=2048, help='hidden layer size.')
parser.add_argument('--learn_embeddings', type=bool, default=True, help='Learn Embedding Parameters.')
parser.add_argument('--min_df', type=int, default=5, help='Min word count.')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate.')
parser.add_argument('--penalty', type=float, default=0.0, help='Regularization Parameter.')
parser.add_argument('--dropout', type=float, default=0.5, help='Dropout Value.')
parser.add_argument('--lr_decay', type=float, default=1e-6, help='Learning Rate Decay.')
parser.add_argument('--minibatch_size', type=int, default=2, help='Mini-batch Size.')
parser.add_argument('--val_minibatch_size', type=int, default=2, help='Val Mini-batch Size.')
parser.add_argument('--model_type', help='Neural Net Architecutre.')
parser.add_argument('--train_data_X', help='Training Data.')
parser.add_argument('--val_data_X', help='Validation Data.')
parser.add_argument('--seed', default=9999, type=int, help='Random Seed.')
parser.add_argument('--grad_clip', type=float, default=None, help='Gradient Clip Value.')
parser.add_argument('--cnn_conv_size', nargs='+', type=int, default=[3], help='CNN Covolution Sizes (widths)')
parser.add_argument('--num_feat_maps', default=300, type=int, help='Number of CNN Feature Maps.')
parser.add_argument('--num_att', default=30, type=int, help='Number of Heads.')
parser.add_argument('--num_support', default=16, type=int, help='Number nearest neighbors to sample for each input instance.')
args = parser.parse_args()
np.random.seed(args.seed)
random.seed(args.seed)
# Load & Process Data
train_txt, train_Y = load_data_file(args.train_data_X)
val_txt, val_Y = load_data_file(args.val_data_X)
data_processor = ProcessData(args.word_vectors, lower=True, min_df=args.min_df)
X_train = data_processor.fit_transform(train_txt)
print 'AVG LEN:', np.mean([len(x) for x in X_train])
sys.stdout.flush()
X_val = data_processor.transform(val_txt)
labels = []
with open(args.labels,'r') as in_file:
for row in in_file:
labels.append(row.strip())
lookup = set(labels)
ml_vec = MultiLabelBinarizer(classes=labels)
ml_vec.fit(train_Y)
Y_train = ml_vec.transform(train_Y)
print Y_train.shape, 'SHAPE'
print 'max:', Y_train.sum(axis=0).max(), Y_train.sum(axis=0).min()
Y_val = ml_vec.transform(val_Y)
print("Init Model")
sys.stdout.flush()
# Init Model
if args.model_type == 'cnn':
from models.match_cnn_reg import CNN
clf = CNN(data_processor.embs, nc=Y_train.shape[1], de=data_processor.embs.shape[1],
lr=args.lr, p_drop=args.dropout, decay=args.lr_decay, clip=args.grad_clip,
fs=args.cnn_conv_size, penalty=args.penalty, train_emb=args.learn_embeddings, num_heads=args.num_att)
print("CNN: hidden_state: %d word_vec_size: %d lr: %.5f decay: %.6f learn_emb: %s dropout: %.3f num_feat_maps: %d penalty: %.5f conv_widths: %s" % (args.hidden_state,
data_processor.embs.shape[1], args.lr, args.lr_decay, args.learn_embeddings, args.dropout, args.num_feat_maps, args.penalty,
args.cnn_conv_size))
else:
raise ValueError('Incorrect Model Specified')
print("Training Model")
sys.stdout.flush()
train_idxs = list(range(len(X_train)))
val_idxs = list(range(len(X_val)))
all_features = []
for start, end in zip(range(0, len(train_idxs), args.val_minibatch_size),
range(args.val_minibatch_size, len(train_idxs)+args.val_minibatch_size, args.val_minibatch_size)):
if len(train_idxs[start:end]) == 0:
continue
#mini_batch_sample = data_processor.pad_data([X_train[i] for i in train_idxs[start:end]])
mini_batch_sample = data_processor.pad_data([X_train[i] for i in train_idxs[start:end]], True)
mini_batch_sample = mini_batch_sample[:,:5000]
features = clf.mid_feat(mini_batch_sample, np.float32(1.))
for i in features:
all_features.append(i)
all_features = np.array(all_features)
# Train Model
best_val_f1 = 0
best_macro_val_f1 = 0
for epoch in range(1, args.num_epochs+1):
mean_loss = []
mean_micro_f1 = []
mean_macro_f1 = []
random.shuffle(train_idxs)
epoch_t0 = time()
print "MINIBATCH SIZE: %d" % (args.minibatch_size)
print len(train_idxs)
for start, end in zip(range(0, len(train_idxs), args.minibatch_size),
range(args.minibatch_size, len(train_idxs)+args.minibatch_size, args.minibatch_size)):
if len(train_idxs[start:end]) == 0:
continue
#mini_batch_sample = data_processor.pad_data([X_train[i] for i in train_idxs[start:end]])
mini_batch_sample = data_processor.pad_data([X_train[i] for i in train_idxs[start:end]], True)
mini_batch_sample = mini_batch_sample[:,:5000]
dists = pairwise_distances(all_features[train_idxs[start:end]], all_features)
#dists = np.dot(all_features[val_idxs[start:end]], all_features.T)
rand_idx = []
check = set(train_idxs[start:end])
sY = []
for d in dists:
arg = np.argsort(d)
tmp = []
for i in arg:
if len(tmp) == args.num_support:
break
if i not in check:
tmp.append(i)
#tmp2 = random.sample(tmp, 16)
rand_idx += tmp
mini_batch_s = data_processor.pad_data([X_train[i] for i in rand_idx], True)
mini_batch_s = mini_batch_s[:,:5000]
cost, preds, new_h, new_h2, pcnt = clf.train_batch(mini_batch_sample,
Y_train[train_idxs[start:end]].astype('float32'),
mini_batch_s,
Y_train[rand_idx].astype('float32'),
np.float32(0.))
costc = clf.train_count(mini_batch_sample,
Y_train[train_idxs[start:end]].astype('float32').sum(axis=1),
np.float32(0.))
for i, h in zip(train_idxs[start:end], new_h):
all_features[i] = h
for i, h in zip(rand_idx, new_h2):
all_features[i] = h
new_preds = np.zeros(np.array(preds).shape)
pc = 0
for row, pcc in zip(np.array(preds), pcnt):
for i in np.argsort(row)[::-1][:int(pcc)]:
new_preds[pc, i] = 1.
pc += 1
#micro_f1 = f1_score((Y_train[train_idxs[start:end]]>0.5).astype('int32'), (np.array(new_preds, dtype='float32')>0.5).astype('int32'), average='micro')
#macro_f1 = f1_score((Y_train[train_idxs[start:end]]>0.5).astype('int32'), (np.array(new_preds, dtype='float32')>0.5).astype('int32'), average='macro')
micro_f1 = f1_score((Y_train[train_idxs[start:end]]>0.5).astype('int32'), (np.array(new_preds, dtype='float32')).astype('int32'), average='micro')
macro_f1 = f1_score((Y_train[train_idxs[start:end]]>0.5).astype('int32'), (np.array(new_preds, dtype='float32')).astype('int32'), average='macro')
pa8 = pak(Y_train[train_idxs[start:end]], np.array(preds).astype('float32'), 8)
pa40 = pak(Y_train[train_idxs[start:end]], np.array(preds).astype('float32'), 40)
ra8 = rak(Y_train[train_idxs[start:end]], np.array(preds).astype('float32'), 8)
ra40 = rak(Y_train[train_idxs[start:end]], np.array(preds).astype('float32'), 40)
mean_micro_f1.append(micro_f1)
mean_macro_f1.append(macro_f1)
mean_loss.append(cost)
sys.stdout.write("Epoch: %d train_avg_loss: %.4f train_avg_micro_f1: %.4f train_avg_macro_f1: %.4f sum1: %d sum2: %d p@8: %.4f p@40: %.4f r@8: %.4f r@40: %.4f\n" %
(epoch, np.mean(mean_loss), np.mean(mean_micro_f1), np.mean(mean_macro_f1), Y_train[train_idxs[start:end]].sum(), np.array(preds).sum(), pa8, pa40, ra8, ra40))
sys.stdout.flush()
# Validate Model
all_val_features = []
for start, end in zip(range(0, len(val_idxs), args.minibatch_size),
range(args.minibatch_size, len(val_idxs)+args.minibatch_size+1, args.minibatch_size)):
if len(val_idxs[start:end]) == 0:
continue
mini_batch_sample = data_processor.pad_data([X_val[i] for i in val_idxs[start:end]], False)
mini_batch_sample = mini_batch_sample[:,:5000]
features = clf.mid_feat(mini_batch_sample, np.float32(1.))
for i in features:
all_val_features.append(i)
all_val_features = np.array(all_val_features)
final_preds = []
val_loss = []
all_pcnt = []
for start, end in zip(range(0, len(val_idxs), args.val_minibatch_size),
range(args.val_minibatch_size, len(val_idxs)+args.val_minibatch_size, args.val_minibatch_size)):
if len(val_idxs[start:end]) == 0:
continue
mini_batch_sample = data_processor.pad_data([X_val[i] for i in val_idxs[start:end]], False)
mini_batch_sample = mini_batch_sample[:,:5000]
dists = pairwise_distances(all_val_features[val_idxs[start:end]], all_features)
#dists = np.dot(all_val_features[val_idxs[start:end]], all_features.T)
rand_idx = []
for d in dists:
arg = np.argsort(d)
tmp = []
for i in arg:
if len(tmp) == args.num_support:
break
tmp.append(i)
rand_idx += tmp
mini_batch_s = data_processor.pad_data([X_train[i] for i in rand_idx], True)
mini_batch_s = mini_batch_s[:,:5000]
preds, cost, pcnt = clf.predict_loss(mini_batch_sample, Y_val[val_idxs[start:end]].astype('float32'),
mini_batch_s, Y_train[rand_idx], np.float32(1.))
for x in preds:
final_preds.append(x.flatten())
for i in pcnt.flatten():
all_pcnt.append(i)
val_loss.append(cost)
new_preds = np.zeros(np.array(final_preds).shape)
pc = 0
for row, pcc in zip(np.array(final_preds), all_pcnt):
for i in np.argsort(row)[::-1][:int(pcc)]:
new_preds[pc, i] = 1.
pc += 1
#micro_f1 = f1_score(Y_val.astype('int32'), (np.array(final_preds).astype('float32')>0.5).astype('int32'), average='micro')
#macro_f1 = f1_score(Y_val.astype('int32'), (np.array(final_preds).astype('float32')>0.5).astype('int32'), average='macro')
micro_f1 = f1_score(Y_val.astype('int32'), (np.array(new_preds).astype('float32')).astype('int32'), average='micro')
macro_f1 = f1_score(Y_val.astype('int32'), (np.array(new_preds).astype('float32')).astype('int32'), average='macro')
pa8 = pak(Y_val, np.array(final_preds).astype('float32'), 8)
pa40 = pak(Y_val, np.array(final_preds).astype('float32'), 40)
ra8 = rak(Y_val, np.array(final_preds).astype('float32'), 8)
ra40 = rak(Y_val, np.array(final_preds).astype('float32'), 40)
sys.stdout.write("epoch: %d val_loss %.4f val_micro_f1: %.4f val_macro_f1: %.4f train_avg_loss: %.4f train_avg_f1: %.4f time: %.1f p@8: %.4f p@40: %.4f r@8: %.4f r@40: %.4f\n" %
(epoch, np.mean(val_loss), micro_f1, macro_f1, np.mean(mean_loss), np.mean(mean_micro_f1), time()-epoch_t0, pa8, pa40, ra8, ra40))
sys.stdout.flush()
# Checkpoint Model
if micro_f1 > best_val_f1:
best_val_f1 = micro_f1
with open(os.path.abspath(args.checkpoint_dir)+'/'+args.checkpoint_name+'_micro_graph2.pkl','wb') as out_file:
pickle.dump({'model_params':clf.__getstate__(), 'token':data_processor,
'ml_bin':ml_vec, 'args':args, 'last_train_avg_loss': np.mean(mean_loss),
'last_train_avg_f1':np.mean(mean_micro_f1), 'val_f1':micro_f1}, out_file, pickle.HIGHEST_PROTOCOL)
if macro_f1 > best_macro_val_f1:
best_macro_val_f1 = macro_f1
with open(os.path.abspath(args.checkpoint_dir)+'/'+args.checkpoint_name+'_macro_graph2.pkl','wb') as out_file:
pickle.dump({'model_params':clf.__getstate__(), 'token':data_processor,
'ml_bin':ml_vec, 'args':args, 'last_train_avg_loss': np.mean(mean_loss),
'last_train_avg_f1':np.mean(mean_micro_f1), 'val_f1':micro_f1}, out_file, pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
main()