-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfbnn_Optim.lua
213 lines (188 loc) · 6.67 KB
/
fbnn_Optim.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
-- This file is copied from Facebook FAIR's fbnn project: https://github.com/facebook/fbnn/blob/master/fbnn/Optim.lua
-- Copyright 2004-present Facebook. All Rights Reserved.
local pl = require('pl.import_into')()
-- from fblualib/fb/util/data.lua , copied here because fblualib is not rockspec ready yet.
-- deepcopy routine that assumes the presence of a 'clone' method in user
-- data should be used to deeply copy. This matches the behavior of Torch
-- tensors.
local function deepcopy(x)
local typename = type(x)
if typename == "userdata" then
return x:clone()
end
if typename == "table" then
local retval = { }
for k,v in pairs(x) do
retval[deepcopy(k)] = deepcopy(v)
end
return retval
end
return x
end
local Optim, parent = torch.class('nn.Optim')
-- Returns weight parameters and bias parameters and associated grad parameters
-- for this module. Annotates the return values with flag marking parameter set
-- as bias parameters set
function Optim.weight_bias_parameters(module)
local weight_params, bias_params
if module.weight then
weight_params = {module.weight, module.gradWeight}
weight_params.is_bias = false
end
if module.bias then
bias_params = {module.bias, module.gradBias}
bias_params.is_bias = true
end
return {weight_params, bias_params}
end
-- The regular `optim` package relies on `getParameters`, which is a
-- beastly abomination before all. This `optim` package uses separate
-- optim state for each submodule of a `nn.Module`.
function Optim:__init(model, optState, checkpoint_data)
assert(model)
assert(checkpoint_data or optState)
assert(not (checkpoint_data and optState))
self.model = model
self.modulesToOptState = {}
-- Keep this around so we update it in setParameters
self.originalOptState = optState
-- Each module has some set of parameters and grad parameters. Since
-- they may be allocated discontinuously, we need separate optState for
-- each parameter tensor. self.modulesToOptState maps each module to
-- a lua table of optState clones.
if not checkpoint_data then
self.model:for_each(function(module)
self.modulesToOptState[module] = { }
local params = self.weight_bias_parameters(module)
-- expects either an empty table or 2 element table, one for weights
-- and one for biases
assert(pl.tablex.size(params) == 0 or pl.tablex.size(params) == 2)
for i, _ in ipairs(params) do
self.modulesToOptState[module][i] = deepcopy(optState)
if params[i] and params[i].is_bias then
-- never regularize biases
self.modulesToOptState[module][i].weightDecay = 0.0
end
end
assert(module)
assert(self.modulesToOptState[module])
end)
else
local state = checkpoint_data.optim_state
local modules = {}
self.model:for_each(function(m) table.insert(modules, m) end)
assert(pl.tablex.compare_no_order(modules, pl.tablex.keys(state)))
self.modulesToOptState = state
end
end
function Optim:save()
return {
optim_state = self.modulesToOptState
}
end
local function _type_all(obj, t)
for k, v in pairs(obj) do
if type(v) == 'table' then
_type_all(v, t)
else
local tn = torch.typename(v)
if tn and tn:find('torch%..+Tensor') then
obj[k] = v:type(t)
end
end
end
end
function Optim:type(t)
self.model:for_each(function(module)
local state= self.modulesToOptState[module]
assert(state)
_type_all(state, t)
end)
end
local function get_device_for_module(mod)
local dev_id = nil
for name, val in pairs(mod) do
if torch.typename(val) == 'torch.CudaTensor' then
local this_dev = val:getDevice()
if this_dev ~= 0 then
-- _make sure the tensors are allocated consistently
assert(dev_id == nil or dev_id == this_dev)
dev_id = this_dev
end
end
end
return dev_id -- _may still be zero if none are allocated.
end
local function on_device_for_module(mod, f)
local this_dev = get_device_for_module(mod)
if this_dev ~= nil then
return cutorch.withDevice(this_dev, f)
end
return f()
end
function Optim:optimize(optimMethod, inputs, targets, criterion, scale)
assert(optimMethod)
assert(inputs)
assert(targets)
assert(criterion)
assert(self.modulesToOptState)
self.model:zeroGradParameters()
local output = self.model:forward(inputs)
if type(targets) == 'table' then
if type(batch_box_labels_gpu) == 'table' then
for i=1,#batch_box_labels_gpu do
targets[i+1] = batch_box_labels_gpu[i]
end
else
targets[2] = batch_box_labels_gpu
end
end
local err = criterion:forward(output, targets)
if err ~= 0 then
local df_do = criterion:backward(output, targets)
self.model:backward(inputs, df_do, scale)
-- We'll set these in the loop that iterates over each module. Get them
-- out here to be captured.
local curGrad
local curParam
local function fEvalMod(x)
return err, curGrad
end
for curMod, opt in pairs(self.modulesToOptState) do
on_device_for_module(curMod, function()
local curModParams = self.weight_bias_parameters(curMod)
-- expects either an empty table or 2 element table, one for weights
-- and one for biases
assert(pl.tablex.size(curModParams) == 0 or
pl.tablex.size(curModParams) == 2)
if curModParams then
for i, tensor in ipairs(curModParams) do
if curModParams[i] then
-- expect param, gradParam pair
curParam, curGrad = table.unpack(curModParams[i])
assert(curParam and curGrad)
optimMethod(fEvalMod, curParam, opt[i])
end
end
end
end)
end
end
return err, output
end
function Optim:setParameters(newParams)
assert(newParams)
assert(type(newParams) == 'table')
local function splice(dest, src)
for k,v in pairs(src) do
dest[k] = v
end
end
splice(self.originalOptState, newParams)
for _,optStates in pairs(self.modulesToOptState) do
for i,optState in pairs(optStates) do
assert(type(optState) == 'table')
splice(optState, newParams)
end
end
end