Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2022Tencent Rhino-bird Open-source Training Program—Angel-Zihan Li-Week3&4 #1229

Open
1123469 opened this issue Aug 16, 2022 · 0 comments
Open

Comments

@1123469
Copy link

1123469 commented Aug 16, 2022


Angel项目第三周&第四周进展

当前进展:

  • 继续对论文随机游走构建context graph部分的精读,并且进一步搜集相关论文及资料
  • 学习Scala语言,并完成对一阶段代码工作的重写(java语言转为scala)
  • 对重写的基于scala代码模块进行了单元测试,并且利用(1,1)-Barbell图验证了功能所构建的相似度层次网络的正确性

算法需要进行的优化:

  • Item1:无向图的adjacency matrix为对称矩阵,可以进行相应的矩阵压缩
  • Item2:DTW算法可根据论文https://go.exlibris.link/35X6ykDp 优化为快速DTW计算
  • Item3:其他代码细节的优化 .etc

当前代码工作的测试及相应结果:

  1. 输入:
    (1,1)Barbell Graph

              测试使用的图为 Barbell-Graph (1,1), 其对应邻接矩阵为:[[0,1,INF],[1,0,1],[INF,1,0]]
    
  2. 期望输出(3x3x3 的结构相似度矩阵 structSimi, 显然 structSimi[k][i][j] = fk(Nodei,Nodej))

    • 手算验证结果:
      verification

    [
    [[0,1,0],[1,0,1],[0,1,0]],
    [[0,3,0],[3,0,3],[0,3,0]],
    [[0,NaN,0],[NaN,NaN,NaN],[0,NaN,NaN]]
    ]

  3. 实际输出:(与手算验证结果一致)

    • java:
      res

    • scala:
      structSimi

遇到的问题:

  • Q1:如何将所完成的功能模块嵌入并完成算法整体的Spark编程
  • S1:继续深入研究源代码,并且相应去进一步学习和掌握scala语言
  • Q2:如何实现随机游走构建context graph
  • S2:可以去参考graphsage算法的具体基于python的实现,将其转化为本项目所需要的东西
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant