-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10.py
247 lines (216 loc) · 9.17 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#-*-coding:UTF-8-*-
"""Builds the CIFAR-10 network.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import re
import tensorflow as tf
import cifar10_input
data_dir = "hdfs://b10g37:8020/user/root/train_data/cifar-10-batches-bin/"
use_fp16 = False
#parameters initialize
def parameters_initialize (i_batch_size, i_learning_rate):
batch_size = i_batch_size
learning_rate = i_learning_rate
#get optimizer
def get_optimizer(optimizer, learning_rate):
if optimizer == "SGD":
return tf.train.GradientDescentOptimizer(learning_rate)
elif optimizer == "Adadelta":
return tf.train.AdadeltaOptimizer(learning_rate)
elif optimizer == "Adagrad":
return tf.train.AdagradOptimizer(learning_rate)
elif optimizer == "Ftrl":
return tf.train.FtrlOptimizer(learning_rate)
elif optimizer == "Adam":
return tf.train.AdamOptimizer(learning_rate)
elif optimizer == "Momentum":
return tf.train.MomentumOptimizer(learning_rate, 0.9)
elif optimizer == "RMSProp":
return tf.train.RMSPropOptimizer(learning_rate)
# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.
# Variables that affect learning rate.
#decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measures the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.summary.histogram(tensor_name + '/activations', x)
tf.summary.scalar(tensor_name + '/sparsity',
tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer, variable_partition_num):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
dtype = tf.float16 if use_fp16 else tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype, partitioner=tf.fixed_size_partitioner(variable_partition_num))
return var
def _variable_with_weight_decay(name, shape, stddev, wd, variable_partition_num):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
dtype = tf.float16 if use_fp16 else tf.float32
var = _variable_on_cpu(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype),
variable_partition_num)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def distorted_inputs(batch_size):
"""Construct distorted input for CIFAR training using the Reader ops.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not data_dir:
raise ValueError('Please supply a data_dir')
images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=batch_size)
if use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inputs(eval_data):
"""Construct input for CIFAR evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not data_dir:
raise ValueError('Please supply a data_dir')
data_dir = os.path.join(data_dir, 'cifar-10-batches-bin')
images, labels = cifar10_input.inputs(eval_data=eval_data,
data_dir=data_dir,
batch_size=batch_size)
if use_fp16:
images = tf.cast(images, tf.float16)
labels = tf.cast(labels, tf.float16)
return images, labels
def inference(images, batch_size, partition_num):
"""Build the CIFAR-10 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0,
variable_partition_num=1)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0),1)
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0,
variable_partition_num=1)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1),1)
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights',
shape=[dim, 384],
stddev=0.04,
wd=0.004,
variable_partition_num=partition_num)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1), 1)
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights',
shape=[384, 192],
stddev=0.04,
wd=0.004,
variable_partition_num=partition_num)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1), 1)
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0,variable_partition_num=1)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0), 1)
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear