We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,datasets.py文件中,args.dataset参数不同会使用不同的预训练数据集,请问vqa_train_filter.json和vqa_train.json有什么不同,当args,dataset==vqav2时,会将vqa_img_feature_train.pickle和vqa_img_feature_val.pickle合并起来做训练,请问您在论文中报告的实验,预训练时具体是用哪种组合呢?比如:pretrain时datasets是vqav2,不做validate, finetune时用okvqa或krvqa
The text was updated successfully, but these errors were encountered:
args.dataset参数不是预训练数据集参数,是下游微调与测试使用的数据集,vqa_train_filter.json过滤掉了YES/NO 和 number类型的问题。args.dataset直接指定微调时使用的数据集即可
Sorry, something went wrong.
好的明白了,谢谢您
大佬再问一下这两个文件有什么区别?
No branches or pull requests
您好,datasets.py文件中,args.dataset参数不同会使用不同的预训练数据集,请问vqa_train_filter.json和vqa_train.json有什么不同,当args,dataset==vqav2时,会将vqa_img_feature_train.pickle和vqa_img_feature_val.pickle合并起来做训练,请问您在论文中报告的实验,预训练时具体是用哪种组合呢?比如:pretrain时datasets是vqav2,不做validate, finetune时用okvqa或krvqa
The text was updated successfully, but these errors were encountered: