-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
114 lines (87 loc) · 3.04 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import win32gui
import win32ui
import time
from ctypes import windll
from PIL import Image
from torchvision.transforms import Compose, CenterCrop
def get_state_filename():
return "fisherman_state.pt"
def get_transform():
return Compose(
[
CenterCrop(227),
]
)
def get_classes():
return ["FishingIdle", "FishingCatch", "NoFishingOk"]
def find_window(title):
searchResults = []
def callback(hwnd, needle):
windowTitle = win32gui.GetWindowText(hwnd)
if needle in windowTitle:
searchResults.append((hwnd, windowTitle))
win32gui.EnumWindows(callback, title)
return searchResults
'''
Taken from https://stackoverflow.com/a/24352388/2054918
'''
def grab_window_image(hwnd):
left, top, right, bot = win32gui.GetClientRect(hwnd)
w = right - left
h = bot - top
hwndDC = win32gui.GetWindowDC(hwnd)
mfcDC = win32ui.CreateDCFromHandle(hwndDC)
saveDC = mfcDC.CreateCompatibleDC()
saveBitMap = win32ui.CreateBitmap()
saveBitMap.CreateCompatibleBitmap(mfcDC, w, h)
saveDC.SelectObject(saveBitMap)
windll.user32.PrintWindow(hwnd, saveDC.GetSafeHdc(), 1)
bmpinfo = saveBitMap.GetInfo()
bmpstr = saveBitMap.GetBitmapBits(True)
im = Image.frombuffer(
'RGB',
(bmpinfo['bmWidth'], bmpinfo['bmHeight']),
bmpstr, 'raw', 'BGRX', 0, 1)
win32gui.DeleteObject(saveBitMap.GetHandle())
saveDC.DeleteDC()
mfcDC.DeleteDC()
win32gui.ReleaseDC(hwnd, hwndDC)
return im
def train_model(model, epochs, loss_func, optimizer, train_data, test_data, device, target_acc=0.9, verbose=False):
for epoch in range(epochs):
train_loss, train_iters = 0, 0
train_acc, train_pass = 0, 0
start_time = time.time()
model.train()
for y, X in train_data:
X = X.to(device)
y = y.to(device)
optimizer.zero_grad()
y_pred = model(X)
l = loss_func(y_pred, y)
l.backward()
optimizer.step()
train_loss += l.item()
train_iters += 1
train_acc += (y_pred.argmax(1) == y.argmax(1)).sum().item()
train_pass += len(X)
test_loss, test_iters = 0, 0
test_acc, test_pass = 0, 0
model.eval()
for y, X in test_data:
X = X.to(device)
y = y.to(device)
y_pred = model(X)
l = loss_func(y_pred, y)
test_loss += l.item()
test_iters += 1
test_acc += (y_pred.argmax(1) == y.argmax(1)).sum().item()
test_pass += len(X)
test_acc = test_acc / test_pass
if verbose:
vars = (epoch, time.time() - start_time, train_loss / train_iters,
test_loss / test_iters, train_acc / train_pass, test_acc)
print("Epoch %d finished in %d s. Train loss: %f. Test loss: %f. Train acc: %f. Test acc: %f" % vars)
if test_acc >= target_acc:
print("Reached target accuracy of %f: %f" % (target_acc, test_acc))
return