-
Notifications
You must be signed in to change notification settings - Fork 0
/
cba_assig_notes.tex
83 lines (72 loc) · 2.29 KB
/
cba_assig_notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% Created 2019-05-26 Sun 12:10
% Intended LaTeX compiler: pdflatex
\documentclass[11pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{minted}
\usepackage{parskip}
\author{Marc-André Chénier}
\date{\today}
\title{}
\hypersetup{
pdfauthor={Marc-André Chénier},
pdftitle={},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
pdflang={English}}
\begin{document}
\tableofcontents
\section{Question 1}
\label{sec:org134d2f8}
Binomial likelihood, the posterior with a conjugate beta prior is:
\begin{equation}
p(\theta | y)=\frac{1}{B(\overline{\alpha}, \overline{\beta})}
\theta^{\overline{\alpha}-1}(1-\theta)^{\overline{\beta}-1}
\end{equation}
with
\begin{equation}
\begin{aligned} \overline{\alpha} &=\alpha_{0}+y \\
\overline{\beta} &=\beta_{0}+n-y \end{aligned}
\end{equation}
The beta prior can be specified as:
\begin{equation}
\equiv \text { binomial experiment with }\left(\alpha_{0}-1\right)
\text { successes in }\left(\alpha_{0}+\beta_{0}-2\right)
\end{equation}
\section{Question 2}
\label{sec:org41d5da7}
Check PPD for binomial likelihood on p. 151. We should take into
account sampling variability of \(\hat{\theta}\)
\section{Question 3}
\label{sec:orgb6d7cdb}
Contour probability: posterior evidence of \(H_{0}\) with HPD interval.
Defined as:
\begin{equation}
P\left[p(\theta | \boldsymbol{y})>p\left(\theta_{0} |
\boldsymbol{y}\right)\right] \equiv\left(1-p_{B}\right)
\end{equation}
\(p_{B}\) is computed from the smallest HPD interval containing
\(\theta_{0}\).
\(\operatorname{Beta}\left(\alpha_{0}, \beta_{0}\right)\) prior is
equivalent to a binomial experiment with \(\alpha_{0} - 1\) successes in
(\(\alpha_{0} + \beta_{0} - 2\)) experiments.
The non-informative beta prior has \(\alpha_{0}=1, \beta_{0}=1\) and is
equal the uniform prior on \([0, 1]\).
\section{Question 4}
\label{sec:org8e86954}
Popular priors for BGLIM are normal proper priors with large variance.
Gelman et al. however suggest Cauchy density with center 0 and scale
parameter 2.5 for standardized continuous covariates.
\end{document}