-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
341 lines (286 loc) · 13.1 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
import json
import torch
import string
import re
from collections import Counter
def prepro_sentence(test_inputs, max_length, bos_token_id, eos_token_id):
input_ids, attention_mask, token_type_ids = [], [], []
for test_input in test_inputs:
ids = [bos_token_id] + test_input + [eos_token_id]
n_mask = max_length-len(ids)
input_ids.append(ids+[0 for _ in range(n_mask)])
attention_mask.append([1 for _ in ids] +
[0 for _ in range(n_mask)])
token_type_ids.append([1 for _ in ids] +
[0 for _ in range(n_mask)])
return {"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids}
def prepro_sentence_pair_single(ids1, ids2, max_length,
bos_token_id, eos_token_id, negate=False,
allow_truncation=False):
assert not negate
if bos_token_id is not None:
ids1 = [bos_token_id] + ids1
if eos_token_id is not None:
ids2 = ids2 + [eos_token_id]
if allow_truncation and len(ids1)+len(ids2) > max_length:
ids1 = ids1[len(ids1)+len(ids2)-max_length:] # len = max_length-len(ids2)
assert len(ids1)+len(ids2)==max_length
n_mask = max_length-len(ids1)-len(ids2)
assert n_mask>=0, (max_length, len(ids1), len(ids2))
input_ids = ids1+ids2+[0 for _ in range(n_mask)]
attention_mask = [1 for _ in ids1+ids2] + [0 for _ in range(n_mask)]
if negate:
token_type_ids = [0 for _ in ids1] + [-1 for _ in ids2] + [0 for _ in range(n_mask)]
else:
token_type_ids = [0 for _ in ids1] + [1 for _ in ids2] + [0 for _ in range(n_mask)]
return input_ids, attention_mask, token_type_ids
def prepro_sentence_pair(train_inputs, test_inputs, max_length,
bos_token_id, eos_token_id,
allow_truncation=False):
input_ids, attention_mask, token_type_ids = [], [], []
for test_input in test_inputs:
for train_input in train_inputs:
_input_ids, _attention_mask, _token_type_ids = \
prepro_sentence_pair_single(train_input, test_input, max_length,
bos_token_id, eos_token_id,
allow_truncation=allow_truncation)
input_ids.append(_input_ids)
attention_mask.append(_attention_mask)
token_type_ids.append(_token_type_ids)
return {"input_ids": torch.LongTensor(input_ids),
"attention_mask": torch.LongTensor(attention_mask),
"token_type_ids": torch.LongTensor(token_type_ids)}
def flatten_label_losses(label_losses, dev_data):
for label in range(len(label_losses)):
k = int(len(label_losses[label]) / len(dev_data))
label_losses[label] = [
label_losses[label][k*i:k*(i+1)]
for i in range(len(dev_data))]
return label_losses
# get templates + verbalizers
def get_prompts(task, idx):
if task in ["SST-2", "sst-5", "mr", "cr"]:
templates = ["A %s one . ", "It was %s . ",
"All in all %s . ", "A %s piece . "]
elif task in ["yelp_full", "yelp_binary", "amazon"]:
templates = ["A %s one. ", "It was %s. ",
"All in all %s. ", "A %s piece. "]
elif task in ["trec", "trec-5", "trec-4", "trec-3"]:
templates = ["%s : ", "Q: %s : ", "Why %s ? ", "Answer: %s . "]
elif task in ["agnews", "sogou", "dbpedia", "yahoo"]:
templates = ["Topic: %s. ", "Subject: %s. ",
"This is about %s. ", "It is about %s. "]
elif task=="subj":
templates = ["This is %s . ", "It's all %s . ",
"It's %s . ", "Is it %s ? "]
elif task=="CoLA":
templates = ["This is %s .",
"It is %s .",
"You are %s .",
"I am %s ."]
else:
raise NotImplementedError(task)
if task in ["SST-2", "mr", "cr", "yelp_binary"]:
label_words = ["terrible", "great"]
elif task in ["sst-5", "yelp_full", "amazon"]:
label_words = ["terrible", "bad", "okay", "good", "great"]
elif task in ["agnews"]:
label_words = ["World", "Sports", "Business", "Technology"]
elif task in ["trec"]:
label_words = ["Description", "Entity", "Expression",
"Human", "Location", "Number"]
elif task in ["trec-5"]:
label_words = ["Description", "Entity", "Expression",
"Human", "Location"]
elif task in ["trec-4"]:
label_words = ["Description", "Entity", "Expression",
"Human"]
elif task in ["trec-3"]:
label_words = ["Description", "Entity", "Expression"]
elif task in ["sogou"]:
label_words = ["Sports", "Finance", "Entertainment",
"Automobile", "Technology"]
elif task in ["subj"]:
label_words = ["subjective", "objective"]
elif task in ["CoLA"]:
label_words = ["not grammatical", "grammatical"]
elif task in ["dbpedia"]:
label_words = ["Company",
"Educational Institution",
"Artist",
"Athlete",
"Office Holder",
"Mean of Transportation",
"Building",
"Natural Place",
"Village",
"Animal",
"Plant",
"Album",
"Film",
"Written Work"]
elif task in ["yahoo"]:
label_words = ["Society & Culture",
"Science & Mathematics",
"Health",
"Education & Reference",
"Computers & Internet",
"Sports",
"Business & Finance",
"Entertainment & Music",
"Family & Relationships",
"Politics & Government"]
else:
raise NotImplementedError(task)
return [templates[idx] % label_word for label_word in label_words]
def get_paths(out_dir, gpt2, method, task, do_zeroshot,
k, seed, train_seed, split, template_idx,
batch_size=None, lr=None, warmup_steps=None,
aux_weight=None, init_method=None, prompt_task=None,
use_demonstrations=False,
ensemble=False,
prompt_tune=False,
head_tune=False,
transform_tune=False,
bad=False,
n_prefix=20,
f1_threshold=0.95,
prompt_file_len=-1):
model_name = gpt2
if not do_zeroshot:
if prompt_tune:
model_name += "-prompt-ft"
if n_prefix!=20 and init_method != "manual":
model_name += "-{}".format(n_prefix)
elif head_tune:
model_name += "-head-ft"
elif transform_tune:
model_name += "-transform-ft"
else:
model_name += "-all-ft"
base_dir = os.path.join(out_dir,
model_name,
"{}{}{}".format(method,
"-demon" if use_demonstrations else "",
"-ensemble" if ensemble else ""),
task)
if prompt_tune:
base_dir = os.path.join(base_dir, init_method)
if init_method == "manual" and prompt_task != None:
base_dir = os.path.join(base_dir, prompt_task)
if not os.path.exists(base_dir):
os.makedirs(base_dir)
if do_zeroshot:
cache_path = str(split)
if use_demonstrations:
cache_path += "-k={}-seed={}".format(k, seed)
if use_demonstrations:
cache_path += "-tseed={}".format(train_seed)
cache_path += "-t={}".format(template_idx)
return os.path.join(base_dir, cache_path+".pkl")
assert batch_size is not None and lr is not None and warmup_steps is not None and \
aux_weight is not None and bad is not None and f1_threshold is not None and prompt_file_len is not None
out_dir = "BS={}-k={}-t={}-seed={}-tseed={}-lr={}-gamma={}-against={}-f1_threshold={}-prompt_file_len={}{}".format(
batch_size, k, template_idx, seed, train_seed, lr, aux_weight, bad, f1_threshold, prompt_file_len,
"-wamrup={}".format(warmup_steps) if warmup_steps>0 else "",
)
return os.path.join(base_dir, out_dir)
def prepend_task_tokens(tokenizer, inputs, n_prefix):
task_tokens = ["<TASK{}>".format(str(i).zfill(2)) for i in range(n_prefix)]
tokenizer.add_tokens(task_tokens)
task_token_ids = tokenizer(" ".join(task_tokens), return_tensors="pt")["input_ids"]
assert task_token_ids.shape[-1]==n_prefix
def convert(inputs):
n_train = inputs["input_ids"].shape[0]
new_input_ids=torch.cat([
task_token_ids.repeat(n_train, 1),
inputs["input_ids"][:,1:]], 1)
inputs = dict(
input_ids=new_input_ids,
attention_mask=torch.cat([
torch.ones((n_train, n_prefix-1), dtype=torch.long),
inputs["attention_mask"]], 1),
token_type_ids=torch.cat([
torch.zeros((n_train, n_prefix-1), dtype=torch.long),
inputs["token_type_ids"]], 1),
labels=torch.cat([
torch.zeros((n_train, n_prefix-1), dtype=torch.long),
inputs["input_ids"]], 1))
return inputs
if type(inputs)==list:
return [convert(_inputs) for _inputs in inputs]
return convert(inputs)
def reassign_output_tokens(inputs, for_labels=True, mapping=None):
'''
if for_labels=True, keep input_ids and convert labels
otherwise, keep labels and convert input_ids
'''
def get_unique_tokens(inputs):
input_ids = inputs["input_ids"].detach().numpy().tolist()
token_type_ids = inputs["token_type_ids"].detach().numpy().tolist()
unique_tokens = set()
for _input_ids, _token_type_ids in zip(input_ids, token_type_ids):
unique_tokens |= set([_id for _id, _token_id in zip(_input_ids, _token_type_ids) if _token_id==int(for_labels)])
return unique_tokens
def convert_set_to_mapping(unique_tokens):
unique_tokens = sorted(unique_tokens)
return {token: new_token for new_token, token in enumerate(unique_tokens)}
def apply_mapping(inputs, mapping):
input_ids = inputs["input_ids"].detach().numpy().tolist()
token_type_ids = inputs["token_type_ids"].detach().numpy().tolist()
converted_input_ids = []
for _input_ids, _token_type_ids in zip(input_ids, token_type_ids):
converted_input_ids.append([])
for _id, _token_id in zip(_input_ids, _token_type_ids):
if _token_id==int(for_labels):
converted_input_ids[-1].append(mapping[_id])
else:
converted_input_ids[-1].append(0)
converted_input_ids = torch.LongTensor(converted_input_ids)
if for_labels:
return dict(input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
labels=converted_input_ids)
return dict(input_ids=converted_input_ids,
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
labels=inputs["input_ids"])
if type(inputs)==list:
if mapping is None:
unique_tokens = set()
for _inputs in inputs:
unique_tokens |= get_unique_tokens(_inputs)
mapping = convert_set_to_mapping(unique_tokens)
rev_mapping = {v:k for k, v in mapping.items()}
return rev_mapping, [apply_mapping(_inputs, mapping) for _inputs in inputs]
assert mapping is None
mapping = convert_set_to_mapping(get_unique_tokens(inputs))
rev_mapping = {v:k for k, v in mapping.items()}
return rev_mapping, apply_mapping(inputs, mapping)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1