-
Notifications
You must be signed in to change notification settings - Fork 176
/
utils.py
232 lines (196 loc) · 12.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import numpy as np
import argparse
from transformers import BertTokenizer, GPT2Tokenizer
from strsimpy.normalized_levenshtein import NormalizedLevenshtein
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class TokenLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, opt):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
self.SPACE = '[s]'
self.GO = '[GO]'
self.list_token = [self.GO, self.SPACE]
self.character = self.list_token + list(opt.character)
self.dict = {word: i for i, word in enumerate(self.character)}
self.batch_max_length = opt.batch_max_length + len(self.list_token)
self.bpe_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
self.wp_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.normalized_levenshtein = NormalizedLevenshtein()
def encode(self, text):
""" convert text-label into text-index.
"""
batch_text = torch.LongTensor(len(text), self.batch_max_length).fill_(self.dict[self.GO])
for i, t in enumerate(text):
txt = [self.GO] + list(t) + [self.SPACE]
txt = [self.dict[char] for char in txt]
batch_text[i][:len(txt)] = torch.LongTensor(txt) # batch_text[:, 0] = [GO] token
return batch_text.to(device)
def char_encode(self, text):
""" convert text-label into text-index.
"""
batch_len = torch.LongTensor(len(text), 2).fill_(self.dict[self.GO])
batch_text = torch.LongTensor(len(text), self.batch_max_length).fill_(self.dict[self.GO])
for i, t in enumerate(text):
length = len(t)
batch_len[i][1] = torch.LongTensor([length]) # batch_text[:, 0] = [GO] token
txt = [self.GO] + list(t) + [self.SPACE]
txt = [self.dict[char] for char in txt]
batch_text[i][:len(txt)] = torch.LongTensor(txt)
return batch_len.to(device), batch_text.to(device)
def char_decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
def bpe_encode(self, text):
batch_text = torch.LongTensor(len(text), self.batch_max_length).fill_(self.dict[self.GO])
for i, t in enumerate(text):
token = self.bpe_tokenizer(t)['input_ids']
txt = [1] + token + [2]
batch_text[i][:len(txt)] = torch.LongTensor(txt)
return batch_text.to(device)
def bpe_decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
tokenstr = self.bpe_tokenizer.decode(text_index[index,:])
texts.append(tokenstr)
return texts
def wp_encode(self, text):
wp_target = self.wp_tokenizer(text,padding='max_length',max_length=self.batch_max_length,truncation=True,return_tensors="pt")
return wp_target["input_ids"].to(device)
def wp_decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
tokenstr = self.wp_tokenizer.decode(text_index[index,:])
tokenlist = tokenstr.split()
texts.append(''.join(tokenlist))
return texts
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res
def get_device(verbose=True):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if verbose:
print("Device:", device)
return device
def get_args(is_train=True):
parser = argparse.ArgumentParser(description='STR')
# for test
parser.add_argument('--eval_data', help='path to evaluation dataset')
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
parser.add_argument('--calculate_infer_time', action='store_true', help='calculate inference timing')
parser.add_argument('--flops', action='store_true', help='calculates approx flops (may not work)')
# for train
parser.add_argument('--exp_name', help='Where to store logs and models')
parser.add_argument('--train_data', required=is_train, help='path to training dataset')
parser.add_argument('--valid_data', required=is_train, help='path to validation dataset')
parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting')
parser.add_argument('--workers', type=int, help='number of data loading workers. Use -1 to use all cores.', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for')
parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation')
parser.add_argument('--saved_model', default='', help="path to model to continue training")
parser.add_argument('--saved_path', default='./saved_models', help="path to save")
parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning')
parser.add_argument('--sgd', action='store_true', help='Whether to use SGD (default is Adadelta)')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)')
parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95')
parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5')
""" Data processing """
parser.add_argument('--select_data', type=str, default='MJ-ST',
help='select training data (default is MJ-ST, which means MJ and ST used as training data)')
parser.add_argument('--batch_ratio', type=str, default='0.5-0.5',
help='assign ratio for each selected data in the batch')
parser.add_argument('--total_data_usage_ratio', type=str, default='1.0',
help='total data usage ratio, this ratio is multiplied to total number of data.')
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=128, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str,
default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode')
""" Model Architecture """
parser.add_argument('--Transformer', type=str, required=True, help='Transformer stage. mgp-str|char-str')
choices = ["mgp_str_base_patch4_3_32_128", "mgp_str_large_patch4_3_32_128", "mgp_str_tiny_patch4_3_32_128",
"mgp_str_small_patch4_3_32_128", "char_str_base_patch4_3_32_128"]
parser.add_argument('--TransformerModel', default='', help='Which mgp_str transformer model', choices=choices)
parser.add_argument('--Transformation', type=str, default='', help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, default='',
help='FeatureExtraction stage. VGG|RCNN|ResNet')
parser.add_argument('--SequenceModeling', type=str, default='', help='SequenceModeling stage. None|BiLSTM')
parser.add_argument('--Prediction', type=str, default='', help='Prediction stage. None|CTC|Attn')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=3,
help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=512,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
# selective augmentation
# can choose specific data augmentation
parser.add_argument('--issel_aug', action='store_true', help='Select augs')
parser.add_argument('--sel_prob', type=float, default=1., help='Probability of applying augmentation')
parser.add_argument('--pattern', action='store_true', help='Pattern group')
parser.add_argument('--warp', action='store_true', help='Warp group')
parser.add_argument('--geometry', action='store_true', help='Geometry group')
parser.add_argument('--weather', action='store_true', help='Weather group')
parser.add_argument('--noise', action='store_true', help='Noise group')
parser.add_argument('--blur', action='store_true', help='Blur group')
parser.add_argument('--camera', action='store_true', help='Camera group')
parser.add_argument('--process', action='store_true', help='Image processing routines')
# use cosine learning rate decay
parser.add_argument('--scheduler', action='store_true', help='Use lr scheduler')
parser.add_argument('--intact_prob', type=float, default=0.5, help='Probability of not applying augmentation')
parser.add_argument('--isrand_aug', action='store_true', help='Use RandAug')
parser.add_argument('--augs_num', type=int, default=3, help='Number of data augment groups to apply. 1 to 8.')
parser.add_argument('--augs_mag', type=int, default=None, help='Magnitude of data augment groups to apply. None if random.')
# for comparison to other augmentations
parser.add_argument('--issemantic_aug', action='store_true', help='Use Semantic')
parser.add_argument('--isrotation_aug', action='store_true', help='Use ')
parser.add_argument('--isscatter_aug', action='store_true', help='Use ')
parser.add_argument('--islearning_aug', action='store_true', help='Use ')
# orig paper uses this for fast benchmarking
parser.add_argument('--fast_acc', action='store_true', help='Fast average accuracy computation')
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
# mask train
parser.add_argument('--mask_ratio', default=0.5, type=float,
help='ratio of the visual tokens/patches need be masked')
parser.add_argument("--patch_size", type=int, default=4)
# for eval
parser.add_argument('--eval_img', action='store_true', help='eval imgs dataset')
parser.add_argument('--range', default=None, help="start-end for example(800-1000)")
parser.add_argument('--model_dir', default='')
parser.add_argument('--demo_imgs', default='')
args = parser.parse_args()
return args