-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmake_images_for_paper.py
66 lines (48 loc) · 2.2 KB
/
make_images_for_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from skimage.io import imread, imsave
import pose_utils
from cmd import args
import os
import re
import pandas as pd
import pose_transform
import numpy as np
args = args()
in_folder = 'ref_nn_fasion'
out_folder = 'ref_nn_fasion_separated'
if not os.path.exists(out_folder):
os.makedirs(out_folder)
args.annotations_file_test = 'data/fasion-annotation-train.csv'
args.images_dir_test = 'data/fasion-dataset/train'
for n, img_pair in enumerate(os.listdir(in_folder)):
m = re.match(r'([A-Za-z0-9_]*.jpg)_([A-Za-z0-9_]*.jpg)', img_pair)
fr = m.groups()[0]
to = m.groups()[1]
gen_img = imread(os.path.join(in_folder, img_pair))
gen_img = gen_img[:, (2 * args.image_size[1]):]
df = pd.read_csv(args.annotations_file_test, sep=':')
ano_fr = df[df['name'] == fr].iloc[0]
ano_to = df[df['name'] == to].iloc[0]
kp_fr = pose_utils.load_pose_cords_from_strings(ano_fr['keypoints_y'], ano_fr['keypoints_x'])
kp_to = pose_utils.load_pose_cords_from_strings(ano_to['keypoints_y'], ano_to['keypoints_x'])
mask = pose_transform.pose_masks(kp_to, img_size=args.image_size).astype(bool)
mask = np.array(reduce(np.logical_or, list(mask)))
mask = mask.astype('float')
pose_fr, _ = pose_utils.draw_pose_from_cords(kp_fr, args.image_size)
pose_to, _ = pose_utils.draw_pose_from_cords(kp_to, args.image_size)
cur_folder = os.path.join(out_folder, str(n))
if not os.path.exists(cur_folder):
os.makedirs(cur_folder)
imsave(os.path.join(cur_folder, 'from.jpg'), imread(os.path.join(args.images_dir_test, fr)))
imsave(os.path.join(cur_folder, 'to.jpg'), imread(os.path.join(args.images_dir_test, to)))
imsave(os.path.join(cur_folder, 'frpose.jpg'), pose_fr)
imsave(os.path.join(cur_folder, 'topose.jpg'), pose_to)
# imsave(os.path.join(cur_folder, 'mask.jpg'), mask)
imsave(os.path.join(cur_folder, 'gen.jpg'), gen_img)
hm_from = pose_utils.cords_to_map(kp_fr, args.image_size).sum(axis=-1)
hm_to = pose_utils.cords_to_map(kp_to, args.image_size).sum(axis=-1)
# hm_from /= hm_from.max()
# hm_to /= hm_to.max()
#
# imsave(os.path.join(cur_folder, 'hm_from.jpg'), hm_from)
#
# imsave(os.path.join(cur_folder, 'hm_to.jpg'), hm_to)