-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvideo_ai.py
74 lines (65 loc) · 2.2 KB
/
video_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import io
import os
import torch
from fastapi import APIRouter, Response
from diffusers import StableVideoDiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import load_image, export_to_video
from PIL import Image
class VideoGeneratorStability:
def __init__(
self,
model_dir,
model_name,
diffuser=StableVideoDiffusionPipeline,
):
self.model_name=model_name
if model_dir[-1] != '/':
model_dir += '/'
self.model_dir=model_dir
self.pipeline = self._generate_pipeline(diffuser)
# # Apply scheduler
# self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config)
def _generate_pipeline(self, diffuser):
# Default to CPU
input_touch_type=torch.float32
input_variant="fp32"
to_value = "cpu"
if torch.cuda.is_available():
input_touch_type=torch.float16
input_variant="fp16"
to_value = "cuda"
elif torch.backends.mps.is_available():
input_touch_type=torch.float16
input_variant="fp16"
to_value = "mps"
pipeline=diffuser.from_pretrained(
self.model_dir+self.model_name,
torch_dtype=input_touch_type,
variant=input_variant,
use_safetensors=True,
load_safety_checker=False,
local_files_only=True
).to(to_value)
return pipeline
def generate_video(
self,
image,
num_inference_steps=25,
motion_bucket_id=30,
num_frames=25,
height=320,
width=512,
):
image = Image.open(io.BytesIO(image.file.read()))
image = load_image(image)
image = image.resize ((1024, 576))
frames = self.pipeline(
image,
num_frames=num_frames,
height=height,
width=width,
num_inference_steps=num_inference_steps,
motion_bucket_id=motion_bucket_id,
decode_chunk_size=8,
noise_aug_strength=0.1).frames[0]
return export_to_video(frames)