-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathstate_dict_loading.py
102 lines (83 loc) · 3.81 KB
/
state_dict_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from collections import OrderedDict
import torch
from model import YOLOV5m
import config
import numpy as np
from PIL import Image
from torchvision import transforms
from utils.bboxes_utils import non_max_suppression
from utils.plot_utils import cells_to_bboxes, plot_image
if __name__ == "__main__":
nc = 80
anchors = config.ANCHORS
first_out = 48
S = [8, 16, 32]
model = YOLOV5m(first_out=first_out, nc=nc, anchors=anchors,
ch=(first_out*4, first_out*8, first_out*16))
pretrained_weights = torch.load("ultralytics_yolov5m.pt")
pt_values = pretrained_weights.values()
"""
# Manually loading ultralytics weights in my architecture
state_dict = model.state_dict()
layers_loaded = []
num_layers_loaded = 0
for idx, (layer, weight) in enumerate(pretrained_weights.items()):
for my_layer, my_weight in state_dict.items():
if weight.shape == my_weight.shape:
if my_layer not in layers_loaded:
state_dict[my_layer] = weight
num_layers_loaded += 1
layers_loaded.append(my_layer)
break
# print(num_layers_loaded)
# print(len(layers_loaded))
equal_layers = 0
state_dict_values = list(state_dict.values())
for idx, (key, value) in enumerate(pretrained_weights.items()):
if torch.equal(value.float(), state_dict_values[idx].float()):
equal_layers += 1
# print(equal_layers)
torch.save(state_dict, "../yolov5m.pt")
model.load_state_dict(torch.load("../yolov5m.pt"))
state_dict = model.state_dict()
car_person_heads = []
for key, vals in state_dict.items():
if "head" in key and "anchors" not in key:
if len(vals.shape) > 1:
layer_1 = torch.cat([vals[0:5, :, :, :], vals[7:8, :, :, :], vals[5:6, :, :, :]], dim=0)
layer_2 = torch.cat([vals[85:90, :, :, :], vals[92:93, :, :, :], vals[90:91, :, :, :]], dim=0)
layer_3 = torch.cat([vals[170:175, :, :, :], vals[177:178, :, :, :], vals[175:176, :, :, :]], dim=0)
car_person_heads.append([key, torch.cat([layer_1, layer_2, layer_3], dim=0)])
else:
layer_1 = torch.cat([vals[0:5], vals[7:8], vals[5:6]], dim=0)
layer_2 = torch.cat([vals[85:90], vals[92:93], vals[90:91]], dim=0)
layer_3 = torch.cat([vals[170:175], vals[177:178], vals[175:176]], dim=0)
car_person_heads.append([key, torch.cat([layer_1, layer_2, layer_3], dim=0)])
else:
car_person_heads.append([key, vals])
state_dict_cp = OrderedDict(car_person_heads)
torch.save(OrderedDict(car_person_heads), "../yolov5m_nh.pt")
no_heads = []
for key, vals in state_dict.items():
if "head" in key and "anchors" not in key:
continue
else:
no_heads.append([key, vals])
state_dict_no_heads = OrderedDict(no_heads)
torch.save(state_dict_no_heads, "../yolov5m_nh.pt")
"""
model = YOLOV5m(first_out=first_out, nc=80, anchors=anchors,
ch=(first_out * 4, first_out * 8, first_out * 16))
model.load_state_dict(state_dict=torch.load("../yolov5m.pt"), strict=True)
model.eval()
img = np.array(Image.open("test_images/hollywood.jpg").convert("RGB"))
img = transforms.ToTensor()(img)
if len(img.shape) == 3:
img = img[None] # expand for batch dim
tg_size = (480, 736)
img = transforms.Resize(tg_size, interpolation=transforms.InterpolationMode.NEAREST)(img)
with torch.no_grad():
out = model(img)
boxes = cells_to_bboxes(out, model.head.anchors, S, list_output=False, is_pred=True)
boxes = non_max_suppression(boxes, iou_threshold=0.6, threshold=.25, max_detections=300)
plot_image(img[0].permute(1, 2, 0).to("cpu"), boxes[0])