-
Notifications
You must be signed in to change notification settings - Fork 37
/
dist_model_recnet.py
executable file
·239 lines (207 loc) · 13.6 KB
/
dist_model_recnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import CoreAudioML.miscfuncs as miscfuncs
import CoreAudioML.training as training
import CoreAudioML.dataset as dataset
import CoreAudioML.networks as networks
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import argparse
import time
import os
import csv
from scipy.io.wavfile import write
prsr = argparse.ArgumentParser(
description='''This script implements training for neural network amplifier/distortion effects modelling. This is
intended to recreate the training of models of the ht1 amplifier and big muff distortion pedal, but can easily be
adapted to use any dataset''')
# arguments for the training/test data locations and file names and config loading
prsr.add_argument('--device', '-p', default='ht1', help='This label describes what device is being modelled')
prsr.add_argument('--data_location', '-dl', default='./Data', help='Location of the "Data" directory')
prsr.add_argument('--file_name', '-fn', default='ht1',
help='The filename of the wav file to be loaded as the input/target data, the script looks for files'
'with the filename and the extensions -input.wav and -target.wav ')
prsr.add_argument('--load_config', '-l',
help="File path, to a JSON config file, arguments listed in the config file will replace the defaults"
, default='RNN3')
prsr.add_argument('--config_location', '-cl', default='Configs', help='Location of the "Configs" directory')
prsr.add_argument('--save_location', '-sloc', default='Results', help='Directory where trained models will be saved')
prsr.add_argument('--load_model', '-lm', default=True, help='load a pretrained model if it is found')
# pre-processing of the training/val/test data
prsr.add_argument('--segment_length', '-slen', type=int, default=22050, help='Training audio segment length in samples')
# number of epochs and validation
prsr.add_argument('--epochs', '-eps', type=int, default=2000, help='Max number of training epochs to run')
prsr.add_argument('--validation_f', '-vfr', type=int, default=2, help='Validation Frequency (in epochs)')
# TO DO
prsr.add_argument('--validation_p', '-vp', type=int, default=25,
help='How many validations without improvement before stopping training, None for no early stopping')
# settings for the training epoch
prsr.add_argument('--batch_size', '-bs', type=int, default=50, help='Training mini-batch size')
prsr.add_argument('--iter_num', '-it', type=int, default=None,
help='Overrides --batch_size and instead sets the batch_size so that a total of --iter_num batches'
'are processed in each epoch')
prsr.add_argument('--learn_rate', '-lr', type=float, default=0.005, help='Initial learning rate')
prsr.add_argument('--init_len', '-il', type=int, default=200,
help='Number of sequence samples to process before starting weight updates')
prsr.add_argument('--up_fr', '-uf', type=int, default=1000,
help='For recurrent models, number of samples to run in between updating network weights, i.e the '
'default argument updates every 1000 samples')
prsr.add_argument('--cuda', '-cu', default=1, help='Use GPU if available')
# loss function/s
prsr.add_argument('--loss_fcns', '-lf', default={'ESRPre': 0.75, 'DC': 0.25},
help='Which loss functions, ESR, ESRPre, DC. Argument is a dictionary with each key representing a'
'loss function name and the corresponding value being the multiplication factor applied to that'
'loss function, used to control the contribution of each loss function to the overall loss ')
prsr.add_argument('--pre_filt', '-pf', default='high_pass',
help='FIR filter coefficients for pre-emphasis filter, can also read in a csv file')
# the validation and test sets are divided into shorter chunks before processing to reduce the amount of GPU memory used
# you can probably ignore this unless during training you get a 'cuda out of memory' error
prsr.add_argument('--val_chunk', '-vs', type=int, default=100000, help='Number of sequence samples to process'
'in each chunk of validation ')
prsr.add_argument('--test_chunk', '-tc', type=int, default=100000, help='Number of sequence samples to process'
'in each chunk of validation ')
# arguments for the network structure
prsr.add_argument('--model', '-m', default='SimpleRNN', type=str, help='model architecture')
prsr.add_argument('--input_size', '-is', default=1, type=int, help='1 for mono input data, 2 for stereo, etc ')
prsr.add_argument('--output_size', '-os', default=1, type=int, help='1 for mono output data, 2 for stereo, etc ')
prsr.add_argument('--num_blocks', '-nb', default=1, type=int, help='Number of recurrent blocks')
prsr.add_argument('--hidden_size', '-hs', default=16, type=int, help='Recurrent unit hidden state size')
prsr.add_argument('--unit_type', '-ut', default='LSTM', help='LSTM or GRU or RNN')
prsr.add_argument('--skip_con', '-sc', default=1, help='is there a skip connection for the input to the output')
args = prsr.parse_args()
# This function takes a directory as argument, looks for an existing model file called 'model.json' and loads a network
# from it, after checking the network in 'model.json' matches the architecture described in args. If no model file is
# found, it creates a network according to the specification in args.
def init_model(save_path, args):
# Search for an existing model in the save directory
if miscfuncs.file_check('model.json', save_path) and args.load_model:
print('existing model file found, loading network')
model_data = miscfuncs.json_load('model', save_path)
# assertions to check that the model.json file is for the right neural network architecture
try:
assert model_data['model_data']['unit_type'] == args.unit_type
assert model_data['model_data']['input_size'] == args.input_size
assert model_data['model_data']['hidden_size'] == args.hidden_size
assert model_data['model_data']['output_size'] == args.output_size
except AssertionError:
print("model file found with network structure not matching config file structure")
network = networks.load_model(model_data)
# If no existing model is found, create a new one
else:
print('no saved model found, creating new network')
network = networks.SimpleRNN(input_size=args.input_size, unit_type=args.unit_type, hidden_size=args.hidden_size,
output_size=args.output_size, skip=args.skip_con)
network.save_state = False
network.save_model('model', save_path)
return network
if __name__ == "__main__":
"""The main method creates the recurrent network, trains it and carries out validation/testing """
start_time = time.time()
# If a load_config argument was provided, construct the file path to the config file
if args.load_config:
# Load the configs and write them onto the args dictionary, this will add new args and/or overwrite old ones
configs = miscfuncs.json_load(args.load_config, args.config_location)
for parameters in configs:
args.__setattr__(parameters, configs[parameters])
if args.model == 'SimpleRNN':
model_name = args.model + args.device + '_' + args.unit_type + '_hs' + str(args.hidden_size) + '_pre_' + args.pre_filt
if args.pre_filt == 'A-Weighting':
with open('Configs/' + 'b_Awght_mk2.csv') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
args.pre_filt = list(reader)
args.pre_filt = args.pre_filt[0]
for item in range(len(args.pre_filt)):
args.pre_filt[item] = float(args.pre_filt[item])
elif args.pre_filt == 'high_pass':
args.pre_filt = [-0.85, 1]
elif args.pre_filt == 'None':
args.pre_filt = None
# Generate name of directory where results will be saved
save_path = os.path.join(args.save_location, args.device + '-' + args.load_config)
# Check if an existing saved model exists, and load it, otherwise creates a new model
network = init_model(save_path, args)
# Check if a cuda device is available
if not torch.cuda.is_available() or args.cuda == 0:
print('cuda device not available/not selected')
cuda = 0
else:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
torch.cuda.set_device(0)
print('cuda device available')
network = network.cuda()
cuda = 1
# Set up training optimiser + scheduler + loss fcns and training info tracker
optimiser = torch.optim.Adam(network.parameters(), lr=args.learn_rate, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimiser, 'min', factor=0.5, patience=5, verbose=True)
loss_functions = training.LossWrapper(args.loss_fcns, args.pre_filt)
train_track = training.TrainTrack()
writer = SummaryWriter(os.path.join('runs2', model_name))
# Load dataset
dataset = dataset.DataSet(data_dir=args.data_location)
dataset.create_subset('train', frame_len=22050)
dataset.load_file(os.path.join('train', args.file_name), 'train')
dataset.create_subset('val')
dataset.load_file(os.path.join('val', args.file_name), 'val')
dataset.create_subset('test')
dataset.load_file(os.path.join('test', args.file_name), 'test')
# If training is restarting, this will ensure the previously elapsed training time is added to the total
init_time = time.time() - start_time + train_track['total_time']*3600
# Set network save_state flag to true, so when the save_model method is called the network weights are saved
network.save_state = True
patience_counter = 0
# This is where training happens
# the network records the last epoch number, so if training is restarted it will start at the correct epoch number
for epoch in range(train_track['current_epoch'] + 1, args.epochs + 1):
ep_st_time = time.time()
# Run 1 epoch of training,
epoch_loss = network.train_epoch(dataset.subsets['train'].data['input'][0],
dataset.subsets['train'].data['target'][0],
loss_functions, optimiser, args.batch_size, args.init_len, args.up_fr)
# Run validation
if epoch % args.validation_f == 0:
val_ep_st_time = time.time()
val_output, val_loss = network.process_data(dataset.subsets['val'].data['input'][0],
dataset.subsets['val'].data['target'][0], loss_functions, args.val_chunk)
scheduler.step(val_loss)
if val_loss < train_track['best_val_loss']:
patience_counter = 0
network.save_model('model_best', save_path)
write(os.path.join(save_path, "best_val_out.wav"),
dataset.subsets['test'].fs, val_output.cpu().numpy()[:, 0, 0])
else:
patience_counter += 1
train_track.val_epoch_update(val_loss.item(), val_ep_st_time, time.time())
writer.add_scalar('Loss/val', train_track['validation_losses'][-1], epoch)
print('current learning rate: ' + str(optimiser.param_groups[0]['lr']))
train_track.train_epoch_update(epoch_loss.item(), ep_st_time, time.time(), init_time, epoch)
# write loss to the tensorboard (just for recording purposes)
writer.add_scalar('Loss/train', train_track['training_losses'][-1], epoch)
writer.add_scalar('LR/current', optimiser.param_groups[0]['lr'])
network.save_model('model', save_path)
miscfuncs.json_save(train_track, 'training_stats', save_path)
if args.validation_p and patience_counter > args.validation_p:
print('validation patience limit reached at epoch ' + str(epoch))
break
lossESR = training.ESRLoss()
test_output, test_loss = network.process_data(dataset.subsets['test'].data['input'][0],
dataset.subsets['test'].data['target'][0], loss_functions, args.test_chunk)
test_loss_ESR = lossESR(test_output, dataset.subsets['test'].data['target'][0])
write(os.path.join(save_path, "test_out_final.wav"), dataset.subsets['test'].fs, test_output.cpu().numpy()[:, 0, 0])
writer.add_scalar('Loss/test_loss', test_loss.item(), 1)
writer.add_scalar('Loss/test_lossESR', test_loss_ESR.item(), 1)
train_track['test_loss_final'] = test_loss.item()
train_track['test_lossESR_final'] = test_loss_ESR.item()
best_val_net = miscfuncs.json_load('model_best', save_path)
network = networks.load_model(best_val_net)
test_output, test_loss = network.process_data(dataset.subsets['test'].data['input'][0],
dataset.subsets['test'].data['target'][0], loss_functions, args.test_chunk)
test_loss_ESR = lossESR(test_output, dataset.subsets['test'].data['target'][0])
write(os.path.join(save_path, "test_out_bestv.wav"),
dataset.subsets['test'].fs, test_output.cpu().numpy()[:, 0, 0])
writer.add_scalar('Loss/test_loss', test_loss.item(), 2)
writer.add_scalar('Loss/test_lossESR', test_loss_ESR.item(), 2)
train_track['test_loss_best'] = test_loss.item()
train_track['test_lossESR_best'] = test_loss_ESR.item()
miscfuncs.json_save(train_track, 'training_stats', save_path)
if cuda:
with open(os.path.join(save_path, 'maxmemusage.txt'), 'w') as f:
f.write(str(torch.cuda.max_memory_allocated()))