-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathseq2seq_attention.py
279 lines (209 loc) · 9.01 KB
/
seq2seq_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import random
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import spacy
from utils import translate_sentence, bleu, save_checkpoint, load_checkpoint
from torch.utils.tensorboard import SummaryWriter # to print to tensorboard
from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator
"""
To install spacy languages do:
python -m spacy download en
python -m spacy download de
"""
spacy_ger = spacy.load("de")
spacy_eng = spacy.load("en")
def tokenize_ger(text):
return [tok.text for tok in spacy_ger.tokenizer(text)]
def tokenize_eng(text):
return [tok.text for tok in spacy_eng.tokenizer(text)]
german = Field(tokenize=tokenize_ger, lower=True, init_token="<sos>", eos_token="<eos>")
english = Field(
tokenize=tokenize_eng, lower=True, init_token="<sos>", eos_token="<eos>"
)
train_data, valid_data, test_data = Multi30k.splits(
exts=(".de", ".en"), fields=(german, english)
)
german.build_vocab(train_data, max_size=10000, min_freq=2)
english.build_vocab(train_data, max_size=10000, min_freq=2)
class Encoder(nn.Module):
def __init__(self, input_size, embedding_size, hidden_size, num_layers, p):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.embedding = nn.Embedding(input_size, embedding_size)
self.rnn = nn.LSTM(embedding_size, hidden_size, num_layers, bidirectional=True)
self.fc_hidden = nn.Linear(hidden_size * 2, hidden_size)
self.fc_cell = nn.Linear(hidden_size * 2, hidden_size)
self.dropout = nn.Dropout(p)
def forward(self, x):
# x: (seq_length, N) where N is batch size
embedding = self.dropout(self.embedding(x))
# embedding shape: (seq_length, N, embedding_size)
encoder_states, (hidden, cell) = self.rnn(embedding)
# outputs shape: (seq_length, N, hidden_size)
# Use forward, backward cells and hidden through a linear layer
# so that it can be input to the decoder which is not bidirectional
# Also using index slicing ([idx:idx+1]) to keep the dimension
hidden = self.fc_hidden(torch.cat((hidden[0:1], hidden[1:2]), dim=2))
cell = self.fc_cell(torch.cat((cell[0:1], cell[1:2]), dim=2))
return encoder_states, hidden, cell
class Decoder(nn.Module):
def __init__(
self, input_size, embedding_size, hidden_size, output_size, num_layers, p
):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.embedding = nn.Embedding(input_size, embedding_size)
self.rnn = nn.LSTM(hidden_size * 2 + embedding_size, hidden_size, num_layers)
self.energy = nn.Linear(hidden_size * 3, 1)
self.fc = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(p)
self.softmax = nn.Softmax(dim=0)
self.relu = nn.ReLU()
def forward(self, x, encoder_states, hidden, cell):
x = x.unsqueeze(0)
# x: (1, N) where N is the batch size
embedding = self.dropout(self.embedding(x))
# embedding shape: (1, N, embedding_size)
sequence_length = encoder_states.shape[0]
h_reshaped = hidden.repeat(sequence_length, 1, 1)
# h_reshaped: (seq_length, N, hidden_size*2)
energy = self.relu(self.energy(torch.cat((h_reshaped, encoder_states), dim=2)))
# energy: (seq_length, N, 1)
attention = self.softmax(energy)
# attention: (seq_length, N, 1)
# attention: (seq_length, N, 1), snk
# encoder_states: (seq_length, N, hidden_size*2), snl
# we want context_vector: (1, N, hidden_size*2), i.e knl
context_vector = torch.einsum("snk,snl->knl", attention, encoder_states)
rnn_input = torch.cat((context_vector, embedding), dim=2)
# rnn_input: (1, N, hidden_size*2 + embedding_size)
outputs, (hidden, cell) = self.rnn(rnn_input, (hidden, cell))
# outputs shape: (1, N, hidden_size)
predictions = self.fc(outputs).squeeze(0)
# predictions: (N, hidden_size)
return predictions, hidden, cell
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, source, target, teacher_force_ratio=0.5):
batch_size = source.shape[1]
target_len = target.shape[0]
target_vocab_size = len(english.vocab)
outputs = torch.zeros(target_len, batch_size, target_vocab_size).to(device)
encoder_states, hidden, cell = self.encoder(source)
# First input will be <SOS> token
x = target[0]
for t in range(1, target_len):
# At every time step use encoder_states and update hidden, cell
output, hidden, cell = self.decoder(x, encoder_states, hidden, cell)
# Store prediction for current time step
outputs[t] = output
# Get the best word the Decoder predicted (index in the vocabulary)
best_guess = output.argmax(1)
# With probability of teacher_force_ratio we take the actual next word
# otherwise we take the word that the Decoder predicted it to be.
# Teacher Forcing is used so that the model gets used to seeing
# similar inputs at training and testing time, if teacher forcing is 1
# then inputs at test time might be completely different than what the
# network is used to. This was a long comment.
x = target[t] if random.random() < teacher_force_ratio else best_guess
return outputs
### We're ready to define everything we need for training our Seq2Seq model ###
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
load_model = False
save_model = True
# Training hyperparameters
num_epochs = 100
learning_rate = 3e-4
batch_size = 32
# Model hyperparameters
input_size_encoder = len(german.vocab)
input_size_decoder = len(english.vocab)
output_size = len(english.vocab)
encoder_embedding_size = 300
decoder_embedding_size = 300
hidden_size = 1024
num_layers = 1
enc_dropout = 0.0
dec_dropout = 0.0
# Tensorboard to get nice loss plot
writer = SummaryWriter(f"runs/loss_plot")
step = 0
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=batch_size,
sort_within_batch=True,
sort_key=lambda x: len(x.src),
device=device,
)
encoder_net = Encoder(
input_size_encoder, encoder_embedding_size, hidden_size, num_layers, enc_dropout
).to(device)
decoder_net = Decoder(
input_size_decoder,
decoder_embedding_size,
hidden_size,
output_size,
num_layers,
dec_dropout,
).to(device)
model = Seq2Seq(encoder_net, decoder_net).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
pad_idx = english.vocab.stoi["<pad>"]
criterion = nn.CrossEntropyLoss(ignore_index=pad_idx)
if load_model:
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model, optimizer)
sentence = (
"ein boot mit mehreren männern darauf wird von einem großen"
"pferdegespann ans ufer gezogen."
)
for epoch in range(num_epochs):
print(f"[Epoch {epoch} / {num_epochs}]")
if save_model:
checkpoint = {
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
save_checkpoint(checkpoint)
model.eval()
translated_sentence = translate_sentence(
model, sentence, german, english, device, max_length=50
)
print(f"Translated example sentence: \n {translated_sentence}")
model.train()
for batch_idx, batch in enumerate(train_iterator):
# Get input and targets and get to cuda
inp_data = batch.src.to(device)
target = batch.trg.to(device)
# Forward prop
output = model(inp_data, target)
# Output is of shape (trg_len, batch_size, output_dim) but Cross Entropy Loss
# doesn't take input in that form. For example if we have MNIST we want to have
# output to be: (N, 10) and targets just (N). Here we can view it in a similar
# way that we have output_words * batch_size that we want to send in into
# our cost function, so we need to do some reshapin. While we're at it
# Let's also remove the start token while we're at it
output = output[1:].reshape(-1, output.shape[2])
target = target[1:].reshape(-1)
optimizer.zero_grad()
loss = criterion(output, target)
# Back prop
loss.backward()
# Clip to avoid exploding gradient issues, makes sure grads are
# within a healthy range
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
# Gradient descent step
optimizer.step()
# Plot to tensorboard
writer.add_scalar("Training loss", loss, global_step=step)
step += 1
# running on entire test data takes a while
score = bleu(test_data[1:100], model, german, english, device)
print(f"Bleu score {score * 100:.2f}")