-
Notifications
You must be signed in to change notification settings - Fork 10
/
hed.yaml
82 lines (79 loc) · 3 KB
/
hed.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Before you do anything please set download_path
# or the location where you have downloaded the rar_file
# snapshot for now : /nas2/harsimrat/hed-testing-deconv-hist-4/models/hed-model-5000
#rar_file: 'http://vcl.ucsd.edu/hed/HED-BSDS.tar'
# location where HED-BSDS.tar would be downloaded and decompressed (Should already exist)
download_path: B:\Softs\deeplearningcodes\seismic-data-process\HolisticallyNestedEdgeDetection\MyHedEdgeDetect
# location of snapshot and tensorbaord summary events (Should already exist)
save_dir: B:\Softs\deeplearningcodes\seismic-data-process\HolisticallyNestedEdgeDetection\MyHedEdgeDetect\model\save
# location where to put the generated edgemaps during testing (Should already exist)
test_output: B:\Softs\deeplearningcodes\seismic-data-process\HolisticallyNestedEdgeDetection\MyHedEdgeDetect\model\model_50
# location of restore model
restore_dir: B:\Softs\deeplearningcodes\seismic-data-process\HolisticallyNestedEdgeDetection\MyHedEdgeDetect\model\save
# location of output error and loss
cost_log_file: B:\Softs\deeplearningcodes\seismic-data-process\HolisticallyNestedEdgeDetection\MyHedEdgeDetect\model\loss
cost_log:
loss: loss.txt
error: error.txt
avgloss: Totalloss.txt
# parameters from the paper
model_weights_path: vgg16.npy
# training batch size, decide with your GPU size
batch_size_train: 10
# validation batch size, ran every val_interval
batch_size_val: 10
# split 30k training images for trainig/validation
train_split: 0.01
# maximum iterations to run epoc == 30k/batch_size
max_iterations: 2
# optimizer params (not used currently Adam is used by defailt)
optimizer: 'adam'
optimizer_params:
learning_rate: 0.00001
weight_decay: 0.0002
# Section 4.1 Loss for layer fusion
loss_weights: 1.0
# save snapshot every save_interval iterations
save_interval: 10
# validate on held out dataset
val_interval: 1
# learning rate decay (Not used with Adam currently)
learning_rate_decay: 0.1
# Apply weighted_cross_entropy_loss to outputs from each side layer
# Setting to false only loss after last conv layer is computed
deep_supervision: True
# Targets are continous if True else binary {0, 1}
target_regression: True
# Mean pixel value to subtract from BGR image
mean_pixel_value: [103.939, 116.779, 123.68]
# RGB to BGR (VGG-16 trained with BGR blame OpenCV)
channel_swap: [2, 1, 0]
# training/validation data
training:
dir: HED-BSDS
list: HED-BSDS/train_pair.lst
#
image_width: 256
image_height: 256
n_channels: 3
training_restore:
dir: HED-BSDS
list: HED-BSDS/train_pair.lst
#
image_width: 256
image_height: 256
n_channels: 3
# testing data
testing:
dir: HED-BSDS
list: HED-BSDS/test.lst
#
image_width: 480
image_height: 320
n_channels: 3
#use snapshot after train_snapshot intervals for restore training
train_snapshot: 9
# use snapshot after test_snapshot intervals for testing
test_snapshot: 0
# Apply testing_threshold after sigmoid to generate binary maps set to 0.0 for continous valued edge maps
testing_threshold: 0.0