As a sanity check, run evaluation using our ImageNet fine-tuned models:
ViT-Base | ViT-Large | ViT-Huge | |
---|---|---|---|
fine-tuned checkpoint | download | download | download |
md5 | 1b25e9 | 51f550 | 2541f2 |
reference ImageNet accuracy | 83.664 | 85.952 | 86.928 |
Evaluate ViT-Base in a single GPU (${IMAGENET_DIR}
is a directory containing {train, val}
sets of ImageNet):
python main_finetune.py --eval --resume mae_finetuned_vit_base.pth --model vit_base_patch16 --batch_size 16 --data_path ${IMAGENET_DIR}
This should give:
* Acc@1 83.664 Acc@5 96.530 loss 0.731
Evaluate ViT-Large:
python main_finetune.py --eval --resume mae_finetuned_vit_large.pth --model vit_large_patch16 --batch_size 16 --data_path ${IMAGENET_DIR}
This should give:
* Acc@1 85.952 Acc@5 97.570 loss 0.646
Evaluate ViT-Huge:
python main_finetune.py --eval --resume mae_finetuned_vit_huge.pth --model vit_huge_patch16 --batch_size 16 --data_path ${IMAGENET_DIR}
This should give:
* Acc@1 86.928 Acc@5 98.088 loss 0.584
Get our pre-trained checkpoints from here.
To fine-tune with multi-node distributed training, run the following on 4 nodes with 8 GPUs each:
python submitit_finetune.py \
--job_dir ${JOB_DIR} \
--nodes 4 \
--batch_size 32 \
--model vit_base_patch16 \
--finetune ${PRETRAIN_CHKPT} \
--epochs 100 \
--blr 5e-4 --layer_decay 0.65 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--dist_eval --data_path ${IMAGENET_DIR}
- Install submitit (
pip install submitit
) first. - Here the effective batch size is 32 (
batch_size
per gpu) * 4 (nodes
) * 8 (gpus per node) = 1024. blr
is the base learning rate. The actuallr
is computed by the linear scaling rule:lr
=blr
* effective batch size / 256.- We have run 4 trials with different random seeds. The resutls are 83.63, 83.66, 83.52, 83.46 (mean 83.57 and std 0.08).
- Training time is ~7h11m in 32 V100 GPUs.
Script for ViT-Large:
python submitit_finetune.py \
--job_dir ${JOB_DIR} \
--nodes 4 --use_volta32 \
--batch_size 32 \
--model vit_large_patch16 \
--finetune ${PRETRAIN_CHKPT} \
--epochs 50 \
--blr 1e-3 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.2 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--dist_eval --data_path ${IMAGENET_DIR}
- We have run 4 trials with different random seeds. The resutls are 85.95, 85.87, 85.76, 85.88 (mean 85.87 and std 0.07).
- Training time is ~8h52m in 32 V100 GPUs.
Script for ViT-Huge:
python submitit_finetune.py \
--job_dir ${JOB_DIR} \
--nodes 8 --use_volta32 \
--batch_size 16 \
--model vit_huge_patch14 \
--finetune ${PRETRAIN_CHKPT} \
--epochs 50 \
--blr 1e-3 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.3 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
--dist_eval --data_path ${IMAGENET_DIR}
- Training time is ~13h9m in 64 V100 GPUs.
To fine-tune our pre-trained ViT-Base with single-node training, run the following on 1 node with 8 GPUs:
OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 main_finetune.py \
--accum_iter 4 \
--batch_size 32 \
--model vit_base_patch16 \
--finetune ${PRETRAIN_CHKPT} \
--epochs 100 \
--blr 5e-4 --layer_decay 0.65 \
--weight_decay 0.05 --drop_path 0.1 --mixup 0.8 --cutmix 1.0 --reprob 0.25 \
--dist_eval --data_path ${IMAGENET_DIR}
- Here the effective batch size is 32 (
batch_size
per gpu) * 4 (accum_iter
) * 8 (gpus) = 1024.--accum_iter 4
simulates 4 nodes.
-
The pre-trained models we provide are trained with normalized pixels
--norm_pix_loss
(1600 epochs, Table 3 in paper). The fine-tuning hyper-parameters are slightly different from the default baseline using unnormalized pixels. -
The original MAE implementation was in TensorFlow+TPU with no explicit mixed precision. This re-implementation is in PyTorch+GPU with automatic mixed precision (
torch.cuda.amp
). We have observed different numerical behavior between the two platforms. In this repo, we use--global_pool
for fine-tuning; using--cls_token
performs similarly, but there is a chance of producing NaN when fine-tuning ViT-Huge in GPUs. We did not observe this issue in TPUs. Turning off amp could solve this issue, but is slower. -
Here we use RandErase following DeiT:
--reprob 0.25
. Its effect is smaller than random variance.