-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_cartpole_es.py
executable file
·131 lines (108 loc) · 3.74 KB
/
01_cartpole_es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
import gym
import time
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
MAX_BATCH_EPISODES = 100
MAX_BATCH_STEPS = 10000
NOISE_STD = 0.01
LEARNING_RATE = 0.001
class Net(nn.Module):
def __init__(self, obs_size, action_size):
super(Net, self).__init__()
self.net = nn.Sequential(
nn.Linear(obs_size, 32),
nn.ReLU(),
nn.Linear(32, action_size),
nn.Softmax(dim=1)
)
def forward(self, x):
return self.net(x)
def evaluate(env, net):
obs = env.reset()
reward = 0.0
steps = 0
while True:
obs_v = torch.FloatTensor([obs])
act_prob = net(obs_v)
acts = act_prob.max(dim=1)[1]
obs, r, done, _ = env.step(acts.data.numpy()[0])
reward += r
steps += 1
if done:
break
return reward, steps
def sample_noise(net):
pos = []
neg = []
for p in net.parameters():
noise_t = torch.from_numpy(np.random.normal(size=p.data.size()).astype(np.float32))
pos.append(noise_t)
neg.append(-noise_t)
return pos, neg
def eval_with_noise(env, net, noise):
old_params = net.state_dict()
for p, p_n in zip(net.parameters(), noise):
p.data += NOISE_STD * p_n
r, s = evaluate(env, net)
net.load_state_dict(old_params)
return r, s
def train_step(net, batch_noise, batch_reward, writer, step_idx):
weighted_noise = None
norm_reward = np.array(batch_reward)
norm_reward -= np.mean(norm_reward)
s = np.std(norm_reward)
if abs(s) > 1e-6:
norm_reward /= s
for noise, reward in zip(batch_noise, norm_reward):
if weighted_noise is None:
weighted_noise = [reward * p_n for p_n in noise]
else:
for w_n, p_n in zip(weighted_noise, noise):
w_n += reward * p_n
m_updates = []
for p, p_update in zip(net.parameters(), weighted_noise):
update = p_update / (len(batch_reward) * NOISE_STD)
p.data += LEARNING_RATE * update
m_updates.append(torch.norm(update))
writer.add_scalar("update_l2", np.mean(m_updates), step_idx)
if __name__ == "__main__":
writer = SummaryWriter(comment="-cartpole-es")
env = gym.make("CartPole-v0")
net = Net(env.observation_space.shape[0], env.action_space.n)
print(net)
step_idx = 0
while True:
t_start = time.time()
batch_noise = []
batch_reward = []
batch_steps = 0
for _ in range(MAX_BATCH_EPISODES):
noise, neg_noise = sample_noise(net)
batch_noise.append(noise)
batch_noise.append(neg_noise)
reward, steps = eval_with_noise(env, net, noise)
batch_reward.append(reward)
batch_steps += steps
reward, steps = eval_with_noise(env, net, neg_noise)
batch_reward.append(reward)
batch_steps += steps
if batch_steps > MAX_BATCH_STEPS:
break
step_idx += 1
m_reward = np.mean(batch_reward)
if m_reward > 199:
print("Solved in %d steps" % step_idx)
break
train_step(net, batch_noise, batch_reward, writer, step_idx)
writer.add_scalar("reward_mean", m_reward, step_idx)
writer.add_scalar("reward_std", np.std(batch_reward), step_idx)
writer.add_scalar("reward_max", np.max(batch_reward), step_idx)
writer.add_scalar("batch_episodes", len(batch_reward), step_idx)
writer.add_scalar("batch_steps", batch_steps, step_idx)
speed = batch_steps / (time.time() - t_start)
writer.add_scalar("speed", speed, step_idx)
print("%d: reward=%.2f, speed=%.2f f/s" % (step_idx, m_reward, speed))
pass