All requirements were installed in a Python 3.11 environment.
First run the following command to install the requirements:
pip install -r reqs.txt
Furthermore, run the following command to install PyTorch for your GPU:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
Change the pytorch-cuda
argument according to your CUDA version. You can check your CUDA version with the following command:
nvcc --version
Then, to run the training script on a tiny dataset with the following command (Omit the tiny
argument to use the full dataset):
python trainer.py -a 'cpu' -b 2 -w 2 -e 3 -c 'simple' -n "test_logger" -tiny
Argument description:
- -a: accelerator (cpu or gpu)
- -b: batch size
- -w: number of workers
- -e: number of epochs
- -c: model architecture (simple for simple classifier)
- -tiny: activates use of tiny dataset (for testing purposes)
- -practise: activates use of practise dataset (subset of full dataset)
- -lr: learning rate
- -n: name of the logger
- -hp_path: path to the hyperparameter file/folder
If none of the arguments are specified, the script will run with the following default values:
- -a: cpu
- -b: from yaml file
- -n: 2
- -e: from yaml file
- -c: simple
- -tiny: deactivated
- -practise: deactivated
For inference, run the following command:
python inference.py -cp 'path/to/checkpoint' -tdp 'path/to/test_data' -op 'results/results.csv' -a 'cpu'