-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwlm_anotherLSTM.lua
96 lines (86 loc) · 3.57 KB
/
wlm_anotherLSTM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
-- Network: another LSTM
-- Application: Word Language Modelling
-- Dataset: Google 1 Billion Words
-- Number of parameters: 3 Billion
-- Reference: Exploring the limits of language modelling
-- How to interpret I/O data sizes?
-- batchsize * sequence_length * word/char_lnegth
-- A batch - sequence of words
-- A sequence consists of multiple words
-- A word, with nn.Lookup, forms an embeddeding (vector) taht is fed as input to network
torch.setdefaulttensortype('torch.FloatTensor')
require 'xlua'
require 'sys'
cmd = torch.CmdLine()
cmd:option('-gpu', 0, 'Run on CPU/GPU')
cmd:option('-threads', 2, 'Number of threads for CPU')
cmd:option('-batch', 1, 'Number of batches')
cmd:option('-gpusample', 500, 'Sampling rate in ms')
cmd:option('-gputype','nvidia','Type of Nvidia GPU')
opt = cmd:parse(arg or {})
torch.setnumthreads(opt.threads)
-- Hyper-parameters
batchsize = opt.batch
seqlen = 50
hiddensize = 8192
inputsize = 8192
projsize = 2048 -- Keeping this more than hidden size gives error
gpusample = opt.gpusample
gputype = opt.gputype
-- build DNN
--[[ 1. Removed the input embedding layer and decoder layer (don't have parameters and not shown in paper as part of network)
2. Input to bigLSTM is produced by nn.Lookup (vocabsize, hiddensize) [vocabsize = 793K words]
3. Output layer is a unigram --]]
--[[ LSTMP cell in math
i[t] = σ(W[x->i]x[t] + W[r->i]r[t−1] + b[1->i]) (1)
f[t] = σ(W[x->f]x[t] + W[r->f]r[t−1] + b[1->f]) (2)
z[t] = tanh(W[x->c]x[t] + W[h->c]r[t−1] + b[1->c]) (3)
c[t] = f[t]c[t−1] + i[t]z[t] (4)
o[t] = σ(W[x->o]x[t] + W[r->o]r[t−1] + b[1->o]) (5)
h[t] = o[t]tanh(c[t]) (6)
r[t] = W[h->r]h[t] (7) --]]
require 'rnn'
model = nn.Sequential()
model:add(nn.SeqLSTMP(inputsize, hiddensize, projsize)) -- LSTM with a projection layer
-- Note ML papers will count parameters as num_params*2 (weight + gradweight, gradweight is null for inference)
num_param = 4 * ((inputsize+1)*hiddensize + hiddensize^2) + hiddensize*projsize
print ('Number of parameters', num_param)
print (model)
-- create input and output sequences
input = torch.Tensor(seqlen, batchsize, inputsize)
output = torch.zeros(seqlen, batchsize, projsize)
-- dnn inference model
local run_dnn = function()
print('==> Type is '..input:type())
-- forward sequence through language-model
for step=1,seqlen do
output[{{step}, {}, {}}] = model:forward(input[{{step},{},{}}])
end
end
-- for running on GPU/CPU
if (opt.gpu == 1) then -- GPU run
require 'cunn'
model = model:cuda() -- move the model, i/o data to gpu memory
input = input:cuda()
output = output:cuda()
cmdstring1="nvidia-smi -i 0 --query-gpu=power.limit,power.draw,utilization.gpu,utilization.memory,memory.total,memory.used,memory.free --format=csv,nounits --loop-ms=%d >" %(gpusample)
cmdstring2=" gpu_profile_data/wlm_anotherLSTM_gpulog_batchsize_%d" %(batchsize)
cmdstring3="_sample_ms_%d" %(gpusample)
cmdstring4="_%s.txt &" %(gputype)
cmdstring=cmdstring1 .. cmdstring2 .. cmdstring3 .. cmdstring4
os.execute(cmdstring)
-- measure gpu time
gputime0 = sys.clock()
run_dnn()
gputime1 = sys.clock()
gputime = gputime1 - gputime0
print('GPU Time: '.. (gputime*1000) .. 'ms')
os.execute('kill -9 `pidof nvidia-smi`')
else -- CPU run
-- measure CPU latency
cputime0 = sys.clock()
run_dnn()
cputime1 = sys.clock()
cputime = cputime1 - cputime0
print('CPU Time: '.. (cputime*1000) .. 'ms')
end