-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathASCAD_test_models.py
372 lines (337 loc) · 16.3 KB
/
ASCAD_test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import matplotlib as mpl
# take care of case where no graphical display is available (by example when run on a dedicated server)
if os.environ.get('DISPLAY','') == '':
print('no display found. Using non-interactive Agg backend')
mpl.use('Agg')
else:
mpl.use('TkAgg')
import os.path
import sys
import h5py
import numpy as np
import matplotlib.pyplot as plt
import ast
import tensorflow as tf
from tensorflow.keras.models import load_model
# The AES SBox that we will use to compute the rank
AES_Sbox = np.array([
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
])
# Two Tables to process a field multplication over GF(256): a*b = alog (log(a) + log(b) mod 255)
log_table=[ 0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120,
101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142,
150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56,
102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16,
126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186,
43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87,
175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232,
44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160,
127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183,
204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157,
151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209,
83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171,
68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165,
103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7 ]
alog_table =[1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53,
95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49,
83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205,
76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136,
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154,
181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163,
254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160,
251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65,
195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117,
159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128,
155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84,
252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202,
69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14,
18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1 ]
# Multiplication function in GF(2^8)
def multGF256(a,b):
if (a==0) or (b==0):
return 0
else:
return alog_table[(log_table[a]+log_table[b]) %255]
def check_file_exists(file_path):
file_path = os.path.normpath(file_path)
if os.path.exists(file_path) == False:
print("Error: provided file path '%s' does not exist!" % file_path)
sys.exit(-1)
return
def load_sca_model(model_file):
check_file_exists(model_file)
try:
model = load_model(model_file)
except:
print("Error: can't load Keras model file '%s'" % model_file)
sys.exit(-1)
return model
# Compute the rank of the real key for a give set of predictions
def rank(predictions, metadata, real_key, min_trace_idx, max_trace_idx, last_key_bytes_proba, target_byte, simulated_key):
# Compute the rank
if len(last_key_bytes_proba) == 0:
# If this is the first rank we compute, initialize all the estimates to zero
key_bytes_proba = np.zeros(256)
else:
# This is not the first rank we compute: we optimize things by using the
# previous computations to save time!
key_bytes_proba = last_key_bytes_proba
for p in range(0, max_trace_idx-min_trace_idx):
# Go back from the class to the key byte. '2' is the index of the byte (third byte) of interest.
plaintext = metadata[min_trace_idx + p]['plaintext'][target_byte]
key = metadata[min_trace_idx + p]['key'][target_byte]
for i in range(0, 256):
# Our candidate key byte probability is the sum of the predictions logs
if (simulated_key!=1):
proba = predictions[p][AES_Sbox[plaintext ^ i]]
else:
proba = predictions[p][AES_Sbox[plaintext ^ key ^ i]]
if proba != 0:
key_bytes_proba[i] += np.log(proba)
else:
# We do not want an -inf here, put a very small epsilon
# that correspondis to a power of our min non zero proba
min_proba_predictions = predictions[p][np.array(predictions[p]) != 0]
if len(min_proba_predictions) == 0:
print("Error: got a prediction with only zeroes ... this should not happen!")
sys.exit(-1)
min_proba = min(min_proba_predictions)
key_bytes_proba[i] += np.log(min_proba**2)
# Now we find where our real key candidate lies in the estimation.
# We do this by sorting our estimates and find the rank in the sorted array.
sorted_proba = np.array(list(map(lambda a : key_bytes_proba[a], key_bytes_proba.argsort()[::-1])))
real_key_rank = np.where(sorted_proba == key_bytes_proba[real_key])[0][0]
return (real_key_rank, key_bytes_proba)
def full_ranks(predictions, dataset, metadata, min_trace_idx, max_trace_idx, rank_step, target_byte, simulated_key):
print("Computing rank for targeted byte {}".format(target_byte))
# Real key byte value that we will use. '2' is the index of the byte (third byte) of interest.
if (simulated_key!=1):
real_key = metadata[0]['key'][target_byte]
else:
real_key = 0
# Check for overflow
if max_trace_idx > dataset.shape[0]:
print("Error: asked trace index %d overflows the total traces number %d" % (max_trace_idx, dataset.shape[0]))
sys.exit(-1)
index = np.arange(min_trace_idx+rank_step, max_trace_idx, rank_step)
f_ranks = np.zeros((len(index), 2), dtype=np.uint32)
key_bytes_proba = []
for t, i in zip(index, range(0, len(index))):
real_key_rank, key_bytes_proba = rank(predictions[t-rank_step:t], metadata, real_key, t-rank_step, t, key_bytes_proba, target_byte, simulated_key)
f_ranks[i] = [t - min_trace_idx, real_key_rank]
return f_ranks
#### ASCAD helper to load profiling and attack data (traces and labels)
# Loads the profiling and attack datasets from the ASCAD
# database
def load_ascad(ascad_database_file, load_metadata=False):
check_file_exists(ascad_database_file)
# Open the ASCAD database HDF5 for reading
try:
in_file = h5py.File(ascad_database_file, "r")
except:
print("Error: can't open HDF5 file '%s' for reading (it might be malformed) ..." % ascad_database_file)
sys.exit(-1)
# Load profiling traces
X_profiling = np.array(in_file['Profiling_traces/traces'], dtype=np.int8)
# Load profiling labels
Y_profiling = np.array(in_file['Profiling_traces/labels'])
# Load attacking traces
X_attack = np.array(in_file['Attack_traces/traces'], dtype=np.int8)
# Load attacking labels
Y_attack = np.array(in_file['Attack_traces/labels'])
if load_metadata == False:
return (X_profiling, Y_profiling), (X_attack, Y_attack)
else:
return (X_profiling, Y_profiling), (X_attack, Y_attack), (in_file['Profiling_traces/metadata'], in_file['Attack_traces/metadata'])
# Compute Pr(Sbox(p^k)*alpha|t)
def proba_dissect_beta(proba_sboxmuladd, proba_beta):
proba = np.zeros(proba_sboxmuladd.shape)
for j in range(proba_beta.shape[1]):
proba_sboxdeadd = proba_sboxmuladd[:, [(beta^j) for beta in range(256)]]
proba[:,j] = np.sum(proba_sboxdeadd*proba_beta, axis=1)
return proba
# Compute Pr(Sbox(p^k)|t)
def proba_dissect_alpha(proba_sboxmul, proba_alpha):
proba = np.zeros(proba_sboxmul.shape)
for j in range(proba_alpha.shape[1]):
proba_sboxdemul = proba_sboxmul[:, [multGF256(alpha,j) for alpha in range(256)]]
proba[:,j] = np.sum(proba_sboxdemul*proba_alpha, axis=1)
return proba
# Compute Pr(Sbox(p[permind]^k[permind])|t)
def proba_dissect_permind(proba_x, proba_permind, j):
proba = np.zeros((proba_x.shape[0], proba_x.shape[2]))
for s in range(proba_x.shape[2]):
proba_1 = proba_x[:,:,s]
proba_2 = proba_permind[:,:,j]
proba[:,s] = np.sum(proba_1*proba_2, axis=1)
return proba
# Compute Pr(Sbox(p^k)|t) by a recombination of the guessed probilities, with the permIndices known during the profiling phase
def multilabel_predict(predictions):
predictions_alpha = predictions[0]
predictions_beta = predictions[1]
predictions_unshuffledsboxmuladd = []
predictions_permind = []
for i in range(16):
predictions_unshuffledsboxmuladd.append(predictions[2+i])
predictions_permind.append(predictions[2+16+i])
predictions_unshuffledsboxmul = []
print("Computing multiplicative masked sbox probas with shuffle...")
for i in range(16):
predictions_unshuffledsboxmul.append(proba_dissect_beta(predictions_unshuffledsboxmuladd[i], predictions_beta))
print("Computing sbox probas with shuffle...")
predictions_unshuffledsbox = []
for i in range(16):
predictions_unshuffledsbox.append(proba_dissect_alpha(predictions_unshuffledsboxmul[i], predictions_alpha))
predictions_unshuffledsbox_v = np.array(predictions_unshuffledsbox)
predictions_permind_v = np.array(predictions_permind)
predictions_unshuffledsbox_v = np.moveaxis(predictions_unshuffledsbox_v, [0,1,2], [1,0,2])
predictions_permind_v = np.moveaxis(predictions_permind_v, [0,1,2], [1,0,2])
predictions_sbox = []
print("Computing sbox probas...")
for i in range(16):
predictions_sbox.append(proba_dissect_permind(predictions_unshuffledsbox_v, predictions_permind_v, i))
return predictions_sbox
# Compute Pr(Sbox(p^k)|t) by a recombination of the guessed probilities without taking the shuffling into account
def multilabel_without_permind_predict(predictions):
predictions_alpha = predictions[0]
predictions_beta = predictions[1]
predictions_sboxmuladd = []
for i in range(16):
predictions_sboxmuladd.append(predictions[2+i])
predictions_sboxmul = []
print("Computing multiplicative masked sbox...")
for i in range(16):
predictions_sboxmul.append(proba_dissect_beta(predictions_sboxmuladd[i], predictions_beta))
print("Computing sbox probas...")
predictions_sbox = []
for i in range(16):
predictions_sbox.append(proba_dissect_alpha(predictions_sboxmul[i], predictions_alpha))
return predictions_sbox
# Check a saved model against one of the ASCAD databases Attack traces
def check_model(model_file, ascad_database, num_traces=2000, target_byte=2, multilabel=0, simulated_key=0, save_file=""):
check_file_exists(model_file)
check_file_exists(ascad_database)
# Load profiling and attack data and metadata from the ASCAD database
(X_profiling, Y_profiling), (X_attack, Y_attack), (Metadata_profiling, Metadata_attack) = load_ascad(ascad_database, load_metadata=True)
# Load model
model = load_sca_model(model_file)
# Get the input layer shape
input_layer_shape = model.get_layer(index=0).input_shape[0]
if isinstance(model.get_layer(index=0).input_shape, list):
input_layer_shape = model.get_layer(index=0).input_shape[0]
else:
input_layer_shape = model.get_layer(index=0).input_shape
# Sanity check
if input_layer_shape[1] != len(X_attack[0, :]):
print("Error: model input shape %d instead of %d is not expected ..." % (input_layer_shape[1], len(X_attack[0, :])))
sys.exit(-1)
# Adapt the data shape according our model input
if len(input_layer_shape) == 2:
# This is a MLP
input_data = X_attack[:num_traces, :]
elif len(input_layer_shape) == 3:
# This is a CNN: reshape the data
input_data = X_attack[:num_traces, :]
input_data = input_data.reshape((input_data.shape[0], input_data.shape[1], 1))
else:
print("Error: model input shape length %d is not expected ..." % len(input_layer_shape))
sys.exit(-1)
# Predict our probabilities
predictions = model.predict(input_data)
if (multilabel!=0):
if (multilabel==1):
predictions_sbox = multilabel_predict(predictions)
else:
predictions_sbox = multilabel_without_permind_predict(predictions)
for target_byte in range(16):
ranks_i = full_ranks(predictions_sbox[target_byte], X_attack, Metadata_attack, 0, num_traces, 10, target_byte, simulated_key)
# We plot the results
x_i = [ranks_i[i][0] for i in range(0, ranks_i.shape[0])]
y_i = [ranks_i[i][1] for i in range(0, ranks_i.shape[0])]
plt.plot(x_i, y_i, label="key_"+str(target_byte))
plt.title('Performance of '+model_file+' against '+ascad_database)
plt.xlabel('number of traces')
plt.ylabel('rank')
plt.grid(True)
plt.legend(loc='upper right')
if (save_file != ""):
plt.savefig(save_file)
else:
plt.show(block=False)
else:
predictions_sbox_i = predictions
# We test the rank over traces of the Attack dataset, with a step of 10 traces
ranks = full_ranks(predictions_sbox_i, X_attack, Metadata_attack, 0, num_traces, 10, target_byte, simulated_key)
# We plot the results
x = [ranks[i][0] for i in range(0, ranks.shape[0])]
y = [ranks[i][1] for i in range(0, ranks.shape[0])]
plt.title('Performance of '+model_file+' against '+ascad_database)
plt.xlabel('number of traces')
plt.ylabel('rank')
plt.grid(True)
plt.plot(x, y)
plt.show(block=False)
if (save_file != ""):
plt.savefig(save_file)
else:
plt.show(block=False)
def read_parameters_from_file(param_filename):
#read parameters for the extract_traces function from given filename
#TODO: sanity checks on parameters
param_file = open(param_filename,"r")
#FIXME: replace eval() by ast.linear_eval()
my_parameters= eval(param_file.read())
model_file = my_parameters["model_file"]
ascad_database = my_parameters["ascad_database"]
num_traces = my_parameters["num_traces"]
target_byte = 2
if ("target_byte" in my_parameters):
target_byte = my_parameters["target_byte"]
multilabel = 0
if ("multilabel" in my_parameters):
multilabel = my_parameters["multilabel"]
simulated_key = 0
if ("simulated_key" in my_parameters):
simulated_key = my_parameters["simulated_key"]
save_file = ""
if ("save_file" in my_parameters):
save_file = my_parameters["save_file"]
return model_file, ascad_database, num_traces, target_byte, multilabel, simulated_key, save_file
if __name__ == "__main__":
if len(sys.argv)!=2:
#default parameters values
model_file="ATMEGA_AES_v1/ATM_AES_v1_fixed_key/ASCAD_data/ASCAD_trained_models/cnn_best_ascad_desync0_epochs75_classes256_batchsize200.h5"
ascad_database=traces_file="ATMEGA_AES_v1/ATM_AES_v1_fixed_key/ASCAD_data/ASCAD_databases/ASCAD.h5"
num_traces=2000
target_byte=2
multilabel=0
simulated_key=0
else:
#get parameters from user input
model_file, ascad_database, num_traces, target_byte, multilabel, simulated_key, save_file = read_parameters_from_file(sys.argv[1])
#check model
check_model(model_file, ascad_database, num_traces, target_byte, multilabel, simulated_key, save_file)
try:
input("Press enter to exit ...")
except SyntaxError:
pass