Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ParallelFor with compile time optimization of kernels with run time parameters #2954

Merged
merged 2 commits into from
Oct 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
331 changes: 331 additions & 0 deletions Src/Base/AMReX_CTOParallelForImpl.H
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
#ifndef AMREX_CTO_PARALLEL_FOR_H_
#define AMREX_CTO_PARALLEL_FOR_H_

ax3l marked this conversation as resolved.
Show resolved Hide resolved
#include <AMReX_BLassert.H>
#include <AMReX_Box.H>
#include <AMReX_Tuple.H>

#include <array>
#include <type_traits>

/* This header is not for the users to include directly. It's meant to be
* included in AMReX_GpuLaunch.H, which has included the headers needed
* here. */

/* Thank Maikel Nadolski and Alex Sinn for the techniques used here! */

namespace amrex {

template <int... ctr>
struct CompileTimeOptions {
// TypeList is defined in AMReX_Tuple.H
using list_type = TypeList<std::integral_constant<int, ctr>...>;
};

#if (__cplusplus >= 201703L)

namespace meta
{
template <typename... As, typename... Bs>
constexpr auto operator+ (TypeList<As...>, TypeList<Bs...>) {
return TypeList<As..., Bs...>{};
}

template <typename... Ls, typename A>
constexpr auto single_product (TypeList<Ls...>, A) {
return TypeList<decltype(Ls{} + TypeList<A>{})...>{};
}

template <typename LLs, typename... As>
constexpr auto operator* (LLs, TypeList<As...>) {
return (TypeList<>{} + ... + single_product(LLs{}, As{}));
}

template <typename... Ls>
constexpr auto cartesian_product_n (TypeList<Ls...>) {
return (TypeList<TypeList<>>{} * ... * Ls{});
}
}

namespace detail
{
template <int MT, typename T, class F, typename... As>
std::enable_if_t<std::is_integral<T>::value || std::is_same<T,Box>::value, bool>
ParallelFor_helper2 (T const& N, F&& f, TypeList<As...>,
std::array<int,sizeof...(As)> const& runtime_options)
{
if (runtime_options == std::array<int,sizeof...(As)>{As::value...}) {
if constexpr (std::is_integral<T>::value) {
ParallelFor<MT>(N, [f] AMREX_GPU_DEVICE (T i) noexcept
{
f(i, As{}...);
});
} else {
ParallelFor<MT>(N, [f] AMREX_GPU_DEVICE (int i, int j, int k) noexcept
{
f(i, j, k, As{}...);
});
}
return true;
} else {
return false;
}
}

template <int MT, typename T, class F, typename... As>
std::enable_if_t<std::is_integral<T>::value, bool>
ParallelFor_helper2 (Box const& box, T ncomp, F&& f, TypeList<As...>,
std::array<int,sizeof...(As)> const& runtime_options)
{
if (runtime_options == std::array<int,sizeof...(As)>{As::value...}) {
ParallelFor<MT>(box, ncomp, [f] AMREX_GPU_DEVICE (int i, int j, int k, T n) noexcept
{
f(i, j, k, n, As{}...);
});
return true;
} else {
return false;
}
}

template <int MT, typename T, class F, typename... PPs, typename RO>
std::enable_if_t<std::is_integral<T>::value || std::is_same<T,Box>::value>
ParallelFor_helper1 (T const& N, F&& f, TypeList<PPs...>,
RO const& runtime_options)
{
bool found_option = (false || ... ||
ParallelFor_helper2<MT>(N, std::forward<F>(f),
PPs{}, runtime_options));
amrex::ignore_unused(found_option);
AMREX_ASSERT(found_option);
}

template <int MT, typename T, class F, typename... PPs, typename RO>
std::enable_if_t<std::is_integral<T>::value>
ParallelFor_helper1 (Box const& box, T ncomp, F&& f, TypeList<PPs...>,
RO const& runtime_options)
{
bool found_option = (false || ... ||
ParallelFor_helper2<MT>(box, ncomp, std::forward<F>(f),
PPs{}, runtime_options));
amrex::ignore_unused(found_option);
AMREX_ASSERT(found_option);
}
}

#endif

template <int MT, typename T, class F, typename... CTOs>
std::enable_if_t<std::is_integral<T>::value>
ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/,
std::array<int,sizeof...(CTOs)> const& runtime_options,
T N, F&& f)
{
#if (__cplusplus >= 201703L)
using OptionsListList = TypeList<typename CTOs::list_type...>;
detail::ParallelFor_helper1<MT>(N, std::forward<F>(f),
meta::cartesian_product_n(OptionsListList{}),
runtime_options);
#else
amrex::ignore_unused(N, f, runtime_options);
static_assert(std::is_integral<F>::value, "This requires C++17");
#endif
}

template <int MT, class F, typename... CTOs>
void ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/,
std::array<int,sizeof...(CTOs)> const& runtime_options,
Box const& box, F&& f)
{
#if (__cplusplus >= 201703L)
using OptionsListList = TypeList<typename CTOs::list_type...>;
detail::ParallelFor_helper1<MT>(box, std::forward<F>(f),
meta::cartesian_product_n(OptionsListList{}),
runtime_options);
#else
amrex::ignore_unused(box, f, runtime_options);
static_assert(std::is_integral<F>::value, "This requires C++17");
#endif
}

template <int MT, typename T, class F, typename... CTOs>
std::enable_if_t<std::is_integral<T>::value>
ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/,
std::array<int,sizeof...(CTOs)> const& runtime_options,
Box const& box, T ncomp, F&& f)
{
#if (__cplusplus >= 201703L)
using OptionsListList = TypeList<typename CTOs::list_type...>;
detail::ParallelFor_helper1<MT>(box, ncomp, std::forward<F>(f),
meta::cartesian_product_n(OptionsListList{}),
runtime_options);
#else
amrex::ignore_unused(box, ncomp, f, runtime_options);
static_assert(std::is_integral<F>::value, "This requires C++17");
#endif
}

/**
* \brief ParallelFor with compile time optimization of kernels with run time options.
*
* It uses fold expression to generate kernel launches for all combinations
* of the run time options. The kernel function can use constexpr if to
* discard unused code blocks for better run time performance. In the
* example below, the code will be expanded into 4*2=8 normal ParallelFors
* for all combinations of the run time parameters.
\verbatim
int A_runtime_option = ...;
int B_runtime_option = ...;
enum A_options : int { A0, A1, A2, A3};
enum B_options : int { B0, B1 };
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>,
CompileTimeOptions<B0,B1>>{},
{A_runtime_option, B_runtime_option},
N, [=] AMREX_GPU_DEVICE (int i, auto A_control, auto B_control)
{
...
if constexpr (A_control.value == A0) {
...
} else if constexpr (A_control.value == A1) {
...
} else if constexpr (A_control.value == A2) {
...
else {
...
}
if constexpr (A_control.value != A3 && B_control.value == B1) {
...
}
...
});
\endverbatim
* Note that due to a limitation of CUDA's extended device lambda, the
* constexpr if block cannot be the one that captures a variable first.
* If nvcc complains about it, you will have to manually capture it outside
* constexpr if. The data type for the parameters is int.
*
* \param ctos list of all possible values of the parameters.
* \param option the run time parameters.
* \param N an interger specifying the 1D for loop's range.
* \param f a callable object taking an integer and working on that iteration.
*/
template <typename T, class F, typename... CTOs>
std::enable_if_t<std::is_integral<T>::value>
ParallelFor (TypeList<CTOs...> ctos,
std::array<int,sizeof...(CTOs)> const& option,
T N, F&& f)
{
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, N, std::forward<F>(f));
}

/**
* \brief ParallelFor with compile time optimization of kernels with run time options.
*
* It uses fold expression to generate kernel launches for all combinations
* of the run time options. The kernel function can use constexpr if to
* discard unused code blocks for better run time performance. In the
* example below, the code will be expanded into 4*2=8 normal ParallelFors
* for all combinations of the run time parameters.
\verbatim
int A_runtime_option = ...;
int B_runtime_option = ...;
enum A_options : int { A0, A1, A2, A3};
enum B_options : int { B0, B1 };
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>,
CompileTimeOptions<B0,B1>>{},
{A_runtime_option, B_runtime_option},
box, [=] AMREX_GPU_DEVICE (int i, int j, int k,
auto A_control, auto B_control)
{
...
if constexpr (A_control.value == A0) {
...
} else if constexpr (A_control.value == A1) {
...
} else if constexpr (A_control.value == A2) {
...
else {
...
}
if constexpr (A_control.value != A3 && B_control.value == B1) {
...
}
...
});
\endverbatim
* Note that due to a limitation of CUDA's extended device lambda, the
* constexpr if block cannot be the one that captures a variable first.
* If nvcc complains about it, you will have to manually capture it outside
* constexpr if. The data type for the parameters is int.
*
* \param ctos list of all possible values of the parameters.
* \param option the run time parameters.
* \param box a Box specifying the 3D for loop's range.
* \param f a callable object taking three integers and working on the given cell.
*/
template <class F, typename... CTOs>
void ParallelFor (TypeList<CTOs...> ctos,
std::array<int,sizeof...(CTOs)> const& option,
Box const& box, F&& f)
{
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, box, std::forward<F>(f));
}

/**
* \brief ParallelFor with compile time optimization of kernels with run time options.
*
* It uses fold expression to generate kernel launches for all combinations
* of the run time options. The kernel function can use constexpr if to
* discard unused code blocks for better run time performance. In the
* example below, the code will be expanded into 4*2=8 normal ParallelFors
* for all combinations of the run time parameters.
\verbatim
int A_runtime_option = ...;
int B_runtime_option = ...;
enum A_options : int { A0, A1, A2, A3};
enum B_options : int { B0, B1 };
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>,
CompileTimeOptions<B0,B1>>{},
{A_runtime_option, B_runtime_option},
box, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n,
auto A_control, auto B_control)
{
...
if constexpr (A_control.value == A0) {
...
} else if constexpr (A_control.value == A1) {
...
} else if constexpr (A_control.value == A2) {
...
else {
...
}
if constexpr (A_control.value != A3 && B_control.value == B1) {
...
}
...
});
\endverbatim
* Note that due to a limitation of CUDA's extended device lambda, the
* constexpr if block cannot be the one that captures a variable first.
* If nvcc complains about it, you will have to manually capture it outside
* constexpr if. The data type for the parameters is int.
*
* \param ctos list of all possible values of the parameters.
* \param option the run time parameters.
* \param box a Box specifying the iteration in 3D space.
* \param ncomp an integer specifying the range for iteration over components.
* \param f a callable object taking three integers and working on the given cell.
*/
template <typename T, class F, typename... CTOs>
std::enable_if_t<std::is_integral<T>::value>
ParallelFor (TypeList<CTOs...> ctos,
std::array<int,sizeof...(CTOs)> const& option,
Box const& box, T ncomp, F&& f)
{
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, box, ncomp, std::forward<F>(f));
}

}

#endif
2 changes: 2 additions & 0 deletions Src/Base/AMReX_GpuLaunch.H
Original file line number Diff line number Diff line change
Expand Up @@ -443,4 +443,6 @@ namespace Gpu {

#endif

#include <AMReX_CTOParallelForImpl.H>

#endif
1 change: 1 addition & 0 deletions Src/Base/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 +223,7 @@ target_sources( amrex
AMReX_MFParallelForC.H
AMReX_MFParallelForG.H
AMReX_TagParallelFor.H
AMReX_CTOParallelForImpl.H
AMReX_ParReduce.H
# CUDA --------------------------------------------------------------------
AMReX_CudaGraph.H
Expand Down
1 change: 1 addition & 0 deletions Src/Base/Make.package
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@ C$(AMREX_BASE)_headers += AMReX_MFParallelForC.H
C$(AMREX_BASE)_headers += AMReX_MFParallelForG.H

C$(AMREX_BASE)_headers += AMReX_TagParallelFor.H
C$(AMREX_BASE)_headers += AMReX_CTOParallelForImpl.H

C$(AMREX_BASE)_headers += AMReX_ParReduce.H

Expand Down
2 changes: 1 addition & 1 deletion Tests/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
#
# List of subdirectories to search for CMakeLists.
#
set( AMREX_TESTS_SUBDIRS AsyncOut MultiBlock Amr CLZ Parser)
set( AMREX_TESTS_SUBDIRS AsyncOut MultiBlock Amr CLZ Parser CTOParFor)

if (AMReX_PARTICLES)
list(APPEND AMREX_TESTS_SUBDIRS Particles)
Expand Down
7 changes: 7 additions & 0 deletions Tests/CTOParFor/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
set(_sources main.cpp)
set(_input_files)

setup_test(_sources _input_files)

unset(_sources)
unset(_input_files)
20 changes: 20 additions & 0 deletions Tests/CTOParFor/GNUmakefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
AMREX_HOME = ../../

DEBUG = FALSE
DIM = 3
COMP = gcc

USE_MPI = FALSE
USE_OMP = FALSE
USE_CUDA = FALSE

TINY_PROFILE = FALSE

CXXSTD = c++17

include $(AMREX_HOME)/Tools/GNUMake/Make.defs

include ./Make.package
include $(AMREX_HOME)/Src/Base/Make.package

include $(AMREX_HOME)/Tools/GNUMake/Make.rules
4 changes: 4 additions & 0 deletions Tests/CTOParFor/Make.package
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
CEXE_sources += main.cpp



Loading