-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
443 lines (367 loc) · 17.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import streamlit as st
import numpy as np
from st_btn_select import st_btn_select
from streamlit_option_menu import option_menu
from cgi import test
import streamlit as st
import pandas as pd
from PIL import Image
import os
import glob
from transformers import CLIPVisionModel, AutoTokenizer, AutoModel
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from torch.utils.data import DataLoader
from transformers import default_data_collator
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
from webcam import webcam
## Global Variables
MP3_ROOT_PATH = "/data2/akoudounas/fma/fma_large/"
IMAGE_SIZE = 224
MEAN = torch.tensor([0.48145466, 0.4578275, 0.40821073])
STD = torch.tensor([0.26862954, 0.26130258, 0.27577711])
TEXT_MODEL = 'bert-base-uncased'
## NavBar
def streamlit_menu(example=1):
if example == 1:
# 1. as sidebar menu
with st.sidebar:
selected = option_menu(
menu_title="Main Menu", # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
)
return selected
if example == 2:
# 2. horizontal menu w/o custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
)
return selected
if example == 3:
# 2. horizontal menu with custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#ffde59", "font-size": "25px"},
"nav-link": {
"font-size": "25px",
"text-align": "left",
"margin": "0px",
"--hover-color": "#eee",
},
"nav-link-selected": {"background-color": "#5271ff"},
},
)
return selected
## Draw Sidebar
def draw_sidebar(
key,
plot=False,
):
st.write(
"""
# Sidebar
```python
Think.
Search.
Feel.
```
"""
)
st.slider("From 1 to 10, how cool is this app?", min_value=1, max_value=10, key=key)
option = st_btn_select(('option1', 'option2', 'option3'), index=2)
st.write(f'Selected option: {option}')
## Change Color
#def change_color(styles="")
## VisionDataset
class VisionDataset(Dataset):
preprocess = transforms.Compose([
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
])
def __init__(self, image_paths: list):
self.image_paths = image_paths
def __getitem__(self, idx):
return self.preprocess(Image.open(self.image_paths[idx]).convert('RGB'))
def __len__(self):
return len(self.image_paths)
## TextDataset
class TextDataset(Dataset):
def __init__(self, text: list, tokenizer, max_len):
self.len = len(text)
self.tokens = tokenizer(text, padding='max_length',
max_length=max_len, truncation=True)
def __getitem__(self, idx):
token = self.tokens[idx]
return {'input_ids': token.ids, 'attention_mask': token.attention_mask}
def __len__(self):
return self.len
## CLIP Demo
class CLIPDemo:
def __init__(self, vision_encoder, text_encoder, tokenizer,
batch_size: int = 64, max_len: int = 64, device='cuda'):
""" Initializes CLIPDemo
it has the following functionalities:
image_search: Search images based on text query
zero_shot: Zero shot image classification
analogy: Analogies with embedding space arithmetic.
Args:
vision_encoder: Fine-tuned vision encoder
text_encoder: Fine-tuned text encoder
tokenizer: Transformers tokenizer
device (torch.device): Running device
batch_size (int): Size of mini-batches used to embeddings
max_length (int): Tokenizer max length
Example:
>>> demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
>>> demo.compute_image_embeddings(test_df.image.to_list())
>>> demo.image_search('یک مرد و یک زن')
>>> demo.zero_shot('./workers.jpg')
>>> demo.anology('./sunset.jpg', additional_text='دریا')
"""
self.vision_encoder = vision_encoder.eval().to(device)
self.text_encoder = text_encoder.eval().to(device)
self.batch_size = batch_size
self.device = device
self.tokenizer = tokenizer
self.max_len = max_len
self.text_embeddings_ = None
self.image_embeddings_ = None
def compute_image_embeddings(self, image_paths: list):
self.image_paths = image_paths
dataloader = DataLoader(VisionDataset(
image_paths=image_paths), batch_size=self.batch_size, num_workers=8)
embeddings = []
with torch.no_grad():
bar = st.progress(0)
for i, images in tqdm(enumerate(dataloader), desc='computing image embeddings'):
bar.progress(int(i/len(dataloader)*100))
image_embedding = self.vision_encoder(
pixel_values=images.to(self.device)).pooler_output
embeddings.append(image_embedding)
bar.empty()
self.image_embeddings_ = torch.cat(embeddings)
def compute_text_embeddings(self, text: list):
self.text = text
dataloader = DataLoader(TextDataset(text=text, tokenizer=self.tokenizer, max_len=self.max_len),
batch_size=self.batch_size, collate_fn=default_data_collator)
embeddings = []
with torch.no_grad():
for tokens in tqdm(dataloader, desc='computing text embeddings'):
image_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
embeddings.append(image_embedding)
self.text_embeddings_ = torch.cat(embeddings)
def text_query_embedding(self, query: str = 'A happy song'):
tokens = self.tokenizer(query, return_tensors='pt')
with torch.no_grad():
text_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
return text_embedding
def most_similars(self, embeddings_1, embeddings_2):
values, indices = torch.cosine_similarity(
embeddings_1, embeddings_2).sort(descending=True)
return values.cpu(), indices.cpu()
def image_search(self, query: str, top_k=10):
""" Search images based on text query
Args:
query (str): text query
image_paths (list[str]): a bunch of image paths
top_k (int): number of relevant images
"""
query_embedding = self.text_query_embedding(query=query)
_, indices = self.most_similars(self.image_embeddings_, query_embedding)
matches = np.array(self.image_paths)[indices][:top_k]
songs_path = []
for match in matches:
filename = os.path.split(match)[1]
filename = int(filename.replace(".jpeg", ""))
audio_path = MP3_ROOT_PATH + "/" + f"{filename:06d}"[0:3] + "/" + f"{filename:06d}"
songs_path.append(audio_path)
return songs_path
## Draw text page
def draw_text(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained("calm_spectrogram/best_text_model/", local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained("calm_spectrogram/best_vision_model/", local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob("spectrograms/*.jpeg")[:10000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
moods = ['-', 'angry', 'calm', 'happy', 'sad']
genres = ['-', 'house', 'pop', 'rock', 'techno']
artists = ['-', 'bad dad', 'lazy magnet', 'the astronauts', 'yan yalego']
years = ['-', '80s', '90s', '2000s', '2010s']
col1, col2 = st.columns(2)
mood = col1.selectbox('Which mood do you feel right now?', moods, help="Select a mood here")
genre = col2.selectbox('Which genre do you want to listen?', genres, help="Select a genre here")
artist = col1.selectbox('Which artist do you like best?', artists, help="Select an artist here")
year = col2.selectbox('Which period do you want to relive?', years, help="Select a period here")
button_form = st.button('Search', key="button_form")
st.text_input("Otherwise, describe the song you are looking for!", value="", key="sentence")
button_sentence = st.button('Search', key="button_sentence")
if (button_sentence and st.session_state.sentence != "") or (button_form and not (mood == "-" and artist == "-" and genre == "-" and year == "-")):
if button_sentence:
sentence = st.session_state.sentence
elif button_form:
sentence = mood if mood != "-" else ""
sentence = sentence + " " + genre if genre != "-" else sentence
sentence = sentence + " " + artist if artist != "-" else sentence
sentence = sentence + " " + year if year != "-" else sentence
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
if st.session_state.sentence == "Moreno La Quatra è un buffone":
st.audio("data/005020.mp3", format="audio/mp3", start_time=0)
## Draw audio page
def draw_audio(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained("calm_spectrogram/best_text_model/", local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained("calm_spectrogram/best_vision_model/", local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob("spectrograms/*.jpeg")[:10000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, describe the kind of song you are looking for!")
stt_button = Button(label="Start Recording", margin=[5,5,5,200], width=200, default_size=10, width_policy='auto', button_type='primary')
stt_button.js_on_event("button_click", CustomJS(code="""
var recognition = new webkitSpeechRecognition();
recognition.continuous = false;
recognition.interimResults = true;
recognition.onresult = function (e) {
var value = "";
for (var i = e.resultIndex; i < e.results.length; ++i) {
if (e.results[i].isFinal) {
value += e.results[i][0].transcript;
}
}
if ( value != "") {
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
}
}
recognition.start();
"""))
result = streamlit_bokeh_events(
stt_button,
events="GET_TEXT",
key="listen",
refresh_on_update=False,
override_height=75,
debounce_time=0)
if result:
if "GET_TEXT" in result:
sentence = result.get("GET_TEXT")
st.write('You asked for: "' + sentence + '"')
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Draw camera page
def draw_camera(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained("calm_spectrogram/best_text_model/", local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained("calm_spectrogram/best_vision_model/", local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob("spectrograms/*.jpeg")[:10000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, show us how you are feeling today!")
captured_image = webcam()
if captured_image is None:
st.write("Waiting for capture...")
else:
# st.write("Got an image from the webcam:")
# st.image(captured_image)
# st.write(type(captured_image))
# st.write(captured_image)
# st.write(captured_image.size)
captured_image = captured_image.convert("RGB")
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
vit_model = ViTForImageClassification.from_pretrained("ViT_ER/best_checkpoint", local_files_only=True)
inputs = vit_feature_extractor(images=[captured_image], return_tensors="pt")
outputs = vit_model(**inputs, output_hidden_states=True)
#st.write(outputs)
emotions = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Neutral']
mood = emotions[np.argmax(outputs.logits.detach().cpu().numpy())]
#st.write(mood)
st.write(f"Your mood seems to be **{mood.lower()}** today! Here's a song for you that matches with how you feel!")
song_paths = st.session_state.model.image_search(mood)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Main
selected = streamlit_menu(example=3)
df = pd.read_csv('full_metadata.csv', index_col=False)
if selected == "Text":
# st.title(f"You have selected {selected}")
draw_text("text", plot=True)
if selected == "Audio":
# st.title(f"You have selected {selected}")
draw_audio("audio", plot=True)
if selected == "Camera":
# st.title(f"You have selected {selected}")
draw_camera("camera", plot=True)
# with st.sidebar:
# draw_sidebar("sidebar")