-
Notifications
You must be signed in to change notification settings - Fork 16
/
sac_motif_freed_bu.py
696 lines (537 loc) · 27.2 KB
/
sac_motif_freed_bu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import time
from copy import deepcopy
import itertools
import math
import numpy as np
from rdkit import Chem
import torch
from torch import nn
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adam, lr_scheduler
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import gym
import core_motif as core
from gym_molecule.envs.env_utils_graph import FRAG_VOCAB, ATOM_VOCAB
from sklearn.preprocessing import MinMaxScaler
def delete_multiple_element(list_object, indices):
indices = sorted(indices, reverse=True)
for idx in indices:
if idx < len(list_object):
list_object.pop(idx)
def get_att_points(mol):
att_points = []
for a in mol.GetAtoms():
if a.GetSymbol() == '*':
att_points.append(a.GetIdx())
return att_points
class ReplayBuffer:
"""
A simple FIFO experience replay buffer for SAC agents.
"""
def __init__(self, obs_dim, act_dim, size):
self.obs_buf = [] # o
self.obs2_buf = [] # o2
self.act_buf = np.zeros((size, 3), dtype=np.int32) # ac
self.rew_buf = np.zeros(size, dtype=np.float32) # r
self.done_buf = np.zeros(size, dtype=np.float32) # d
self.ac_prob_buf = []
self.log_ac_prob_buf = []
self.ac_first_buf = []
self.ac_second_buf = []
self.ac_third_buf = []
self.o_embeds_buf = []
self.ptr, self.size, self.max_size = 0, 0, size
self.done_location = []
# Active learning buffer
self.sampling_buf = np.zeros(size, dtype=np.float32) # r
self.scaler = MinMaxScaler()
# annealing effect
self.frame = 1
self.alpha = 0.6
self.beta_start = 0.4
self.beta_frames = int(1e5)
def store(self, obs, act, rew, next_obs, done, ac_prob, log_ac_prob, \
ac_first_prob, ac_second_hot, ac_third_prob, \
o_embeds, sampling_score):
if self.size == self.max_size:
self.obs_buf.pop(0)
self.obs2_buf.pop(0)
self.ac_prob_buf.pop(0)
self.log_ac_prob_buf.pop(0)
self.ac_first_buf.pop(0)
self.ac_second_buf.pop(0)
self.ac_third_buf.pop(0)
self.o_embeds_buf.pop(0)
self.obs_buf.append(obs)
self.obs2_buf.append(next_obs)
self.ac_prob_buf.append(ac_prob)
self.log_ac_prob_buf.append(log_ac_prob)
self.ac_first_buf.append(ac_first_prob)
self.ac_second_buf.append(ac_second_hot)
self.ac_third_buf.append(ac_third_prob)
self.o_embeds_buf.append(o_embeds)
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.done_buf[self.ptr] = done
self.sampling_buf[self.ptr] = sampling_score
if done:
self.done_location.append(self.ptr)
self.ptr = (self.ptr+1) % self.max_size
self.size = min(self.size+1, self.max_size)
def rew_store(self, rew, batch_size=32):
rew_ls = list(rew)
done_location_np = np.array(self.done_location)
zeros = np.where(rew==0.0)[0]
nonzeros = np.where(rew!=0.0)[0]
zero_ptrs = done_location_np[zeros]
done_location_np = done_location_np[nonzeros]
rew = rew[nonzeros]
if len(self.done_location) > 0:
self.rew_buf[done_location_np] += rew
self.done_location = []
self.act_buf = np.delete(self.act_buf, zero_ptrs, axis=0)
self.rew_buf = np.delete(self.rew_buf, zero_ptrs)
self.done_buf = np.delete(self.done_buf, zero_ptrs)
self.sampling_buf = np.delete(self.sampling_buf, zero_ptrs)
delete_multiple_element(self.obs_buf, zero_ptrs.tolist())
delete_multiple_element(self.obs2_buf, zero_ptrs.tolist())
delete_multiple_element(self.ac_prob_buf, zero_ptrs.tolist())
delete_multiple_element(self.log_ac_prob_buf, zero_ptrs.tolist())
delete_multiple_element(self.ac_first_buf, zero_ptrs.tolist())
delete_multiple_element(self.ac_second_buf, zero_ptrs.tolist())
delete_multiple_element(self.ac_third_buf, zero_ptrs.tolist())
delete_multiple_element(self.o_embeds_buf, zero_ptrs.tolist())
self.size = min(self.size-len(zero_ptrs), self.max_size)
self.ptr = (self.ptr-len(zero_ptrs)) % self.max_size
def sample_batch(self, device, t, batch_size=32):
# Weighted Sampling
sampling_score = deepcopy(self.sampling_buf[:self.size])**self.alpha
# Normalize importance_sampling weight
sampling_score = self.scaler.fit_transform(sampling_score.reshape(-1, 1)) # Min-max scaler for sum to one
sampling_score = (sampling_score/sampling_score.sum()).reshape(-1)
idxs = np.random.choice([i for i in range(len(sampling_score))],
size=batch_size, p=sampling_score)
# Weighted sampling with Uncertainty calculation Every step
sampling_score_batch = sampling_score[idxs]
# Importance Correction
beta = self.beta_by_frame(t)
sampling_score_batch = (t*sampling_score_batch+1e-12)**(-beta)
# normalize importance
sampling_score_batch = self.scaler.fit_transform(sampling_score_batch.reshape(-1,1))
sampling_score_batch = (sampling_score_batch/sampling_score_batch.sum()).reshape(-1)
sampling_score_batch = torch.as_tensor(sampling_score_batch, dtype=torch.float32).to(device)
obs_batch = [self.obs_buf[idx] for idx in idxs]
obs2_batch = [self.obs2_buf[idx] for idx in idxs]
ac_prob_batch = [self.ac_prob_buf[idx] for idx in idxs]
log_ac_prob_batch = [self.log_ac_prob_buf[idx] for idx in idxs]
ac_first_batch = torch.stack([self.ac_first_buf[idx] for idx in idxs]).squeeze(1)
ac_second_batch = torch.stack([self.ac_second_buf[idx] for idx in idxs]).squeeze(1)
ac_third_batch = torch.stack([self.ac_third_buf[idx] for idx in idxs]).squeeze(1)
o_g_emb_batch = torch.stack([self.o_embeds_buf[idx][2] for idx in idxs]).squeeze(1)
act_batch = torch.as_tensor(self.act_buf[idxs], dtype=torch.float32).unsqueeze(-1).to(device)
rew_batch = torch.as_tensor(self.rew_buf[idxs], dtype=torch.float32).to(device)
done_batch = torch.as_tensor(self.done_buf[idxs], dtype=torch.float32).to(device)
batch = dict(obs=obs_batch,
obs2=obs2_batch,
act=act_batch,
rew=rew_batch,
done=done_batch,
ac_prob=ac_prob_batch,
log_ac_prob=log_ac_prob_batch,
ac_first=ac_first_batch,
ac_second=ac_second_batch,
ac_third=ac_third_batch,
o_g_emb=o_g_emb_batch,
idxs=idxs,
sampling_score=sampling_score_batch)
return batch
def update_priorities(self, batch_indices, batch_priorities):
for idx, prio in zip(batch_indices, batch_priorities):
self.sampling_buf[idx] = prio
def beta_by_frame(self, frame_idx):
"""
Linearly increases beta from beta_start to 1 over time from 1 to beta_frames.
3.4 ANNEALING THE BIAS (Paper: PER)
We therefore exploit the flexibility of annealing the amount of importance-sampling
correction over time, by defining a schedule on the exponent
that reaches 1 only at the end of
learning. In practice, we linearly anneal
from its initial value
0 to 1
"""
return min(1.0, self.beta_start + frame_idx * (1.0 - self.beta_start) / self.beta_frames)
def xavier_uniform_init(m):
if type(m) == nn.Linear:
torch.nn.init.xavier_uniform(m.weight)
def xavier_normal_init(m):
if type(m) == nn.Linear:
torch.nn.init.xavier_normal(m.weight)
class sac:
"""
Soft Actor-Critic (SAC)
"""
def __init__(self, writer, args, env_fn, actor_critic=core.GCNActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99,
polyak=0.995, lr=1e-3, alpha=0.2, batch_size=100, start_steps=500,
update_after=100, update_every=50, update_freq=50, expert_every=5, num_test_episodes=10, max_ep_len=1000,
save_freq=2500, train_alpha=True):
super().__init__()
self.device = args.device
torch.manual_seed(seed)
np.random.seed(seed)
self.gamma = gamma
self.polyak = polyak
self.num_test_episodes = num_test_episodes
self.writer = writer
self.fname = 'molecule_gen/'+args.name_full+'.csv'
self.test_fname = 'molecule_gen/'+args.name_full+'_test.csv'
self.save_name = './ckpt/' + args.name_full + '_'
self.steps_per_epoch = steps_per_epoch
self.epochs = epochs
self.batch_size = batch_size
self.replay_size = replay_size
self.start_steps = start_steps
self.max_ep_len = args.max_action
self.update_after = update_after
self.update_every = update_every
self.update_freq = update_freq
self.docking_every = int(update_every/2)
self.save_freq = save_freq
self.train_alpha = train_alpha
self.pretrain_q = -1
self.env, self.test_env = env_fn, deepcopy(env_fn)
# self.obs_dim = 128
self.obs_dim = args.emb_size * 2
self.act_dim = len(FRAG_VOCAB)-1
# intrinsic reward
self.intr_rew = args.intr_rew
self.intr_rew_ratio = args.intr_rew_ratio
self.ac1_dims = 40
self.ac2_dims = len(FRAG_VOCAB) # 76
self.ac3_dims = 40
self.action_dims = [self.ac1_dims, self.ac2_dims, self.ac3_dims]
self.target_entropy = args.target_entropy
self.log_alpha = torch.tensor([np.log(alpha)], requires_grad=train_alpha)
alpha = self.log_alpha.exp().item()
# Create actor-critic module and target networks
self.ac = actor_critic(self.env, args).to(args.device)
self.ac_targ = deepcopy(self.ac).to(args.device).eval()
if args.load==1:
fname = args.name_full_load
self.ac.load_state_dict(torch.load(fname))
self.ac_targ = deepcopy(self.ac).to(args.device)
print(f"loaded model {fname} successfully")
# Freeze target networks with respect to optimizers (only update via polyak averaging)
for p in self.ac_targ.parameters():
p.requires_grad = False
for q in self.ac.parameters():
q.requires_grad = True
# Experience buffer
self.replay_buffer = ReplayBuffer(obs_dim=self.obs_dim, act_dim=self.act_dim, size=replay_size)
# Count variables (protip: try to get a feel for how different size networks behave!)
self.var_counts = tuple(core.count_vars(module) for module in [self.ac.pi, self.ac.q1, self.ac.q2])
self.iter_so_far = 0
self.ep_so_far = 0
## OPTION1: LEARNING RATE
pi_lr = args.init_pi_lr
q_lr = args.init_q_lr
alpha_lr = args.init_alpha_lr
d_lr = 1e-3
p_lr = 1e-3
## OPTION2: OPTIMIZER SETTING
self.pi_params = list(self.ac.pi.parameters())
self.q_params = list(self.ac.q1.parameters()) + list(self.ac.q2.parameters()) + list(self.ac.embed.parameters())
self.p_params = list(self.ac.p.parameters())
self.alpha_params = [self.log_alpha]
self.emb_params = list(self.ac.embed.parameters())
self.pi_optimizer = Adam(self.pi_params, lr=pi_lr, weight_decay=1e-4)
self.q_optimizer = Adam(self.q_params, lr=q_lr, weight_decay=1e-4)
self.p_optimizer = Adam(self.p_params, lr=p_lr, weight_decay=1e-4)
self.alpha_optimizer = Adam(self.alpha_params, lr=alpha_lr, eps=1e-4)
self.q_scheduler = lr_scheduler.ReduceLROnPlateau(self.q_optimizer, factor=0.1, patience=768)
self.pi_scheduler = lr_scheduler.ReduceLROnPlateau(self.pi_optimizer, factor=0.1, patience=768)
self.p_scheduler = lr_scheduler.ReduceLROnPlateau(self.p_optimizer, factor=0.1, patience=500)
self.L2_loss = torch.nn.MSELoss()
torch.set_printoptions(profile="full")
self.possible_bonds = [Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE]
# active learning
self.dropout = args.dropout
self.active_learning = args.active_learning
self.alpha_start = self.start_steps # + 3000
self.alpha_end = self.start_steps + 30000 # + 7000
self.t = 0
# ERE
self.eta_0 = 0.996
self.eta_T = 1.0
self.n_interactions = steps_per_epoch * epochs
self.scaler = MinMaxScaler()
self.ac.apply(xavier_uniform_init)
tm = time.localtime(time.time())
self.init_tm = time.strftime('_%Y-%m-%d_%I:%M:%S-%p', tm)
def compute_loss_q(self, data):
ac_first, ac_second, ac_third = data['ac_first'], data['ac_second'], data['ac_third']
sampling_score = data['sampling_score']
# # Importance correction
self.ac.q1.train()
self.ac.q2.train()
o = data['obs']
_, _, o_g_emb = self.ac.embed(o)
q1 = self.ac.q1(o_g_emb, ac_first, ac_second, ac_third).squeeze()
q2 = self.ac.q2(o_g_emb.detach(), ac_first, ac_second, ac_third).squeeze()
# Target actions come from *current* policy
o2 = data['obs2']
r, d = data['rew'], data['done']
with torch.no_grad():
o2_g, o2_n_emb, o2_g_emb = self.ac.embed(o2)
cands = self.ac.embed(self.ac.pi.cand)
a2, (a2_prob, log_a2_prob), (ac2_first, ac2_second, ac2_third) = self.ac.pi(o2_g_emb, o2_n_emb, o2_g, cands)
# Target Q-values
q1_pi_targ = self.ac_targ.q1(o2_g_emb, ac2_first, ac2_second, ac2_third)
q2_pi_targ = self.ac_targ.q2(o2_g_emb, ac2_first, ac2_second, ac2_third)
q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ).squeeze()
backup = r + self.gamma * (1 - d) * q_pi_targ
# MSE loss against Bellman backup
loss_q1 = ((q1 - backup)**2*sampling_score).mean()
loss_q2 = ((q2 - backup)**2*sampling_score).mean()
loss_q = loss_q1 + loss_q2
print('Q loss', loss_q1, loss_q2)
return loss_q
# Set up function for computing SAC pi loss
def compute_loss_pi(self, data):
sampling_score = data['sampling_score']
with torch.no_grad():
o_embeds = self.ac.embed(data['obs'])
o_g, o_n_emb, o_g_emb = o_embeds
cands = self.ac.embed(self.ac.pi.cand)
_, (ac_prob, log_ac_prob), (ac_first, ac_second, ac_third) = \
self.ac.pi(o_g_emb, o_n_emb, o_g, cands)
q1_pi = self.ac.q1(o_g_emb, ac_first, ac_second, ac_third)
q2_pi = self.ac.q2(o_g_emb, ac_first, ac_second, ac_third)
q_pi = torch.min(q1_pi, q2_pi)
ac_prob_sp = torch.split(ac_prob, self.action_dims, dim=1)
log_ac_prob_sp = torch.split(log_ac_prob, self.action_dims, dim=1)
loss_policy = torch.mean(-q_pi*sampling_score)
# Entropy-regularized policy loss
alpha = min(self.log_alpha.exp().item(), 20)
alpha = max(self.log_alpha.exp().item(), .05)
loss_entropy = 0
loss_alpha = 0
ent_weight = [1, 1, 1]
# New version
ent_weight = [1, 1, 1]
# get ac1 x ac2 x ac3
ac_prob_comb = torch.einsum('by, bz->byz', ac_prob_sp[1], ac_prob_sp[2]).reshape(self.batch_size, -1) # (bs , 73 x 40)
ac_prob_comb = torch.einsum('bx, bz->bxz', ac_prob_sp[0], ac_prob_comb).reshape(self.batch_size, -1) # (bs , 40 x 73 x 40)
# order by (a1, b1, c1) (a1, b1, c2)! Be advised!
log_ac_prob_comb = log_ac_prob_sp[0].reshape(self.batch_size, self.action_dims[0], 1, 1).repeat(
1, 1, self.action_dims[1], self.action_dims[2]).reshape(self.batch_size, -1)\
+ log_ac_prob_sp[1].reshape(self.batch_size, 1, self.action_dims[1], 1).repeat(
1, self.action_dims[0], 1, self.action_dims[2]).reshape(self.batch_size, -1)\
+ log_ac_prob_sp[2].reshape(self.batch_size, 1, 1, self.action_dims[2]).repeat(
1, self.action_dims[0], self.action_dims[1], 1).reshape(self.batch_size, -1)
loss_entropy = ((alpha * ac_prob_comb * log_ac_prob_comb).sum(dim=1)*sampling_score).mean()
loss_alpha = -(sampling_score*self.log_alpha.to(self.device) * \
((ac_prob_comb*log_ac_prob_comb).sum(dim=1) + self.target_entropy).detach()).mean()
print('loss policy', loss_policy)
print('loss entropy', loss_entropy)
print('loss_alpha', loss_alpha)
# Record things
if self.writer is not None:
self.writer.add_scalar("Entropy", sum(-(x * ac_prob_sp[i]).mean() for i, x in enumerate(log_ac_prob_sp)), self.iter_so_far)
self.writer.add_scalar("Alpha", alpha, self.iter_so_far)
return loss_entropy, loss_policy, loss_alpha
def L2_dist(self, x, y):
return (x-y)**2
def MCDropoutLoss(self, x, y, logvar):
return torch.mean(.5*(-logvar).exp().unsqueeze(1)*self.L2_dist(x, y)) + .5*torch.mean(logvar)
def total_stdev(self, x_samples, logvar_samples):
return torch.sqrt(torch.var(x_samples, dim=1) + torch.mean(logvar_samples.exp(), dim=1))
def compute_active_loss(self, ob, rew):
# Acquire single sample for loss calculation
pred_mean, pred_logvar = self.ac.p(ob)
rew = torch.tensor(rew).to(self.device).float()
loss_p = self.MCDropoutLoss(pred_mean, pred_logvar, rew).float()
return loss_p
def compute_active_rew(self, ob):
# Acquire MC samples first
"""
For regression this epistemic uncertainty is captured
by the predictive variance, which can be approximated as:
"""
mean_infer = []
logvar_infer = []
with torch.no_grad():
mean_samples, logvar_samples = self.ac.p.forward_n_samples(ob)
# # Use epistemic + aleatoric uncertainty
rew_intr = self.total_stdev(mean_samples, logvar_samples).cpu().detach().numpy()
return rew_intr.squeeze()
def update(self, data):
# First run one gradient descent step for Q1 and Q2
ave_pi_grads, ave_q_grads = [], []
# Run one gradient descent step for discriminator
loss_q = self.compute_loss_q(data)
self.q_optimizer.zero_grad()
loss_q.backward()
clip_grad_norm_(self.q_params, 5)
for q in list(self.q_params):
ave_q_grads.append(q.grad.abs().mean().item())
self.writer.add_scalar("grad_q", np.array(ave_q_grads).mean(), self.iter_so_far)
self.q_optimizer.step()
self.q_scheduler.step(loss_q)
# Freeze Q-networks so you don't waste computational effort
# computing gradients for them during the policy learning step.
for q in self.q_params:
q.requires_grad = False
loss_entropy, loss_policy, loss_alpha = self.compute_loss_pi(data)
loss_pi = loss_entropy + loss_policy
self.pi_optimizer.zero_grad()
loss_pi.backward()
clip_grad_norm_(self.pi_params, 5)
for p in self.pi_params:
ave_pi_grads.append(p.grad.abs().mean().item())
self.writer.add_scalar("grad_pi", np.array(ave_pi_grads).mean(), self.iter_so_far)
self.pi_optimizer.step()
self.pi_scheduler.step(loss_policy)
if self.train_alpha:
if self.alpha_end > self.t >= self.alpha_start:
self.alpha_optimizer.zero_grad()
loss_alpha.backward()
self.alpha_optimizer.step()
# Unfreeze Q-networks so you can optimize it at next DDPG step.
for p in self.q_params:
p.requires_grad = True
# Record things
if self.writer is not None:
self.writer.add_scalar("loss_Q", loss_q.item(), self.iter_so_far)
self.writer.add_scalar("loss_Pi", loss_pi.item(), self.iter_so_far)
self.writer.add_scalar("loss_Policy", loss_policy.item(), self.iter_so_far)
self.writer.add_scalar("loss_Ent", loss_entropy.item(), self.iter_so_far)
self.writer.add_scalar("loss_alpha", loss_alpha.item(), self.iter_so_far)
# Finally, update target networks by polyak averaging.
with torch.no_grad():
self.ac_targ.load_state_dict(self.ac.state_dict())
for p, p_targ in zip(self.ac.parameters(), self.ac_targ.parameters()):
# NB: We use an in-place operations "mul_", "add_" to update target
# params, as opposed to "mul" and "add", which would make new tensors.
p_targ.data.mul_(self.polyak)
p_targ.data.add_((1 - self.polyak) * p.data)
def get_action(self, o, deterministic=False):
return self.ac.act(o, deterministic)
def train(self):
# Prepare for interaction with environment
total_steps = self.steps_per_epoch * self.epochs
start_time = time.time()
o, ep_ret, ep_len = self.env.reset(), 0, 0
ep_len_batch = 0
ob_list = []
o_embed_list = []
# Main loop: collect experience in env and update/log each epoch
for t in range(total_steps):
self.t = t
with torch.no_grad():
cands = self.ac.embed(self.ac.pi.cand)
o_embeds = self.ac.embed([o])
o_g, o_n_emb, o_g_emb = o_embeds
if t > self.start_steps:
ac, (ac_prob, log_ac_prob), (ac_first, ac_second, ac_third) = \
self.ac.pi(o_g_emb, o_n_emb, o_g, cands)
print(ac, ' pi')
else:
ac = self.env.sample_motif()[np.newaxis]
(ac_prob, log_ac_prob), (ac_first, ac_second, ac_third) = \
self.ac.pi.sample(ac[0], o_g_emb, o_n_emb, o_g, cands)
print(ac, 'sample')
# Step the env
o2, r, d, info = self.env.step(ac)
if d and self.active_learning is not None:
ob_list.append(o)
o_embed_list.append(o_g_emb)
r_d = info['stop']
# Store experience to replay buffer
# Problems: attachment points may not exists in o2
# Only store Obs where attachment point exits in o2
if any(o2['att']):
# # Acquire sampling scores
# PER sampling score acquisition
# Get MC sampling score
if self.active_learning == "freed_bu":
intr_rew = self.compute_active_rew([o])
if self.writer:
self.writer.add_scalar("EpActiveRet", intr_rew, self.iter_so_far)
if type(ac) == np.ndarray:
self.replay_buffer.store(o, ac, r, o2, r_d,
ac_prob, log_ac_prob, ac_first, ac_second, ac_third,
o_embeds, intr_rew)
else:
self.replay_buffer.store(o, ac.detach().cpu().numpy(), r, o2, r_d,
ac_prob, log_ac_prob, ac_first, ac_second, ac_third,
o_embeds, intr_rew)
# Super critical, easy to overlook step: make sure to update
# most recent observation!
o = o2
# End of trajectory handling
if get_att_points(self.env.mol) == []: # Temporally force attachment calculation
d = True
if not any(o2['att']):
d = True
if d:
o, ep_ret, ep_len = self.env.reset(), 0, 0
self.ep_so_far += 1
if t>1 and t % self.docking_every == 0 and self.env.smile_list != []:
n_smi = len(self.env.smile_list)
print('=================== num smiles : ', n_smi)
print('=================== t : ', t)
if n_smi > 0:
ext_rew = self.env.reward_batch()
if self.active_learning == "freed_bu":
# Version 2: update on instances with rewards, infer sampling scores on all instances
for e in self.emb_params:
e.requires_grad = False
# update MC dropout module
print('ob list', len(ob_list))
print('ext rew', len(ext_rew))
loss_p = self.compute_active_loss(ob_list, ext_rew)
if not torch.isnan(loss_p).any():
self.p_optimizer.zero_grad()
loss_p.backward()
clip_grad_norm_(self.p_params, 5)
self.p_optimizer.step()
self.p_scheduler.step(loss_p)
self.writer.add_scalar("loss_Actives", loss_p.item(), self.iter_so_far)
for e in self.emb_params:
e.requires_grad = True
ob_list = []
o_embed_list = []
r_batch = ext_rew
self.replay_buffer.rew_store(r_batch, self.docking_every)
with open(self.fname[:-4]+self.init_tm+'.csv', 'a') as f:
for i in range(n_smi):
str = f'{self.env.smile_list[i]},{ext_rew[i]},{t}'+'\n'
f.write(str)
if self.writer:
n_nonzero_smi = np.count_nonzero(ext_rew)
self.writer.add_scalar("EpRet", sum(ext_rew)/n_nonzero_smi, self.iter_so_far)
self.env.reset_batch()
ep_len_batch = 0
# Update handling
if t >= self.update_after and t % self.update_every == 0:
for j in range(self.update_freq):
t_update = time.time()
batch = self.replay_buffer.sample_batch(self.device, self.t, self.batch_size)
# update uncertainty loss
priorities = self.compute_active_rew(batch['obs'])
idxs = batch['idxs']
self.replay_buffer.update_priorities(idxs, priorities)
self.update(data=batch)
dt_update = time.time()
print('update time : ', j, dt_update-t_update)
# End of epoch handling
if (t+1) % self.steps_per_epoch == 0:
epoch = (t+1) // self.steps_per_epoch
# Save model
if (t % self.save_freq == 0) or (t == self.epochs):
fname = self.save_name + f'{self.iter_so_far}'
torch.save(self.ac.state_dict(), fname+"_rl")
print('model saved!',fname)
self.iter_so_far += 1