-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClusteringForTissueBalancing.py
102 lines (71 loc) · 3.27 KB
/
ClusteringForTissueBalancing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
def fill_holes(binary_img):
# Copy the image
im_in = binary_img.copy()
# Threshold (to ensure binary input)
th, im_th = cv2.threshold(im_in, 0.45, 1, cv2.THRESH_BINARY_INV)
# Copy the thresholded image
im_floodfill = im_th.copy()
# Mask used for flood filling. Notice the size needs to be 2 pixels larger than the image
h, w = im_th.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
# Flood fill from point (0, 0)
cv2.floodFill(im_floodfill, mask, (0, 0), 255)
# Invert floodfilled image
im_floodfill_inv = cv2.bitwise_not(im_floodfill)
# Combine the two images to get the foreground
filled_image = im_th | im_floodfill_inv
return filled_image
def cluster(image_path, weights=[0.6, 0.1, 0.2], fill_the_holes=True):
# Load image and extract each channel
image = cv2.imread(image_path)
Rw1, Rw2, Rw3 = [image[..., i] / 255 for i in range(3)]
images = [Rw1, Rw2, Rw3]
scale_percent = 30 # percent of the original size
width = int(Rw1.shape[1] * scale_percent / 100)
height = int(Rw1.shape[0] * scale_percent / 100)
dim = (width, height)
# Resize image
resized_images = [cv2.resize(img, dim, interpolation=cv2.INTER_AREA) for img in images]
weighted_images = [img * weight for img, weight in zip(resized_images, weights)]
# Stack all images to create a feature vector for each pixel
features = np.stack(weighted_images, axis=-1).reshape(-1, 3)
# Apply KMeans clustering with a consistent initialization and random seed
kmeans = KMeans(n_clusters=4, init="k-means++", random_state=42)
labels = kmeans.fit_predict(features)
# Identify the cluster that is closest to white
white_cluster = np.argmin(np.linalg.norm(kmeans.cluster_centers_ - [1, 1, 1], axis=1))
# If the white cluster is not labeled as '0', swap labels
if white_cluster != 0:
labels[labels == 0] = -1 # Temporary change label '0' to '-1'
labels[labels == white_cluster] = 0 # Assign label '0' to the white cluster
labels[labels == -1] = white_cluster # Assign previous '0' cluster to 'white_cluster' label
# Reshape the labels to the image's shape
labels_2D = labels.reshape(height, width)
pred = labels_2D.astype(np.uint8)
pred = cv2.medianBlur(pred, 11)
if fill_the_holes:
pred = fill_holes(pred)
return pred
def process_images(input_folder, output_folder):
for filename in os.listdir(input_folder):
if filename.lower().endswith((".png", ".jpg", ".jpeg")):
image_path = os.path.join(input_folder, filename)
result = cluster(image_path, fill_the_holes=True)
# Create the output folder if it doesn't exist
os.makedirs(output_folder, exist_ok=True)
# Save the result
output_path = os.path.join(output_folder, "processed_" + filename)
cv2.imwrite(output_path, result * 255) # Scale back up to 0-255 range
# Optionally display the result
plt.imshow(result)
plt.axis("off")
plt.show()
# Usage
input_folder = "./input_images"
output_folder = "./output_images"
process_images(input_folder, output_folder)