-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
1264 lines (1107 loc) · 52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
from datetime import datetime
from termcolor import colored
import torch
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf
from collections import deque
import pdb
from torch.utils.data import Sampler
from torch.autograd import Variable
from numbers import Number
import pickle
import math
from deepsnap.batch import Batch as deepsnap_Batch
COLOR_LIST = ["b", "r", "g", "y", "c", "m", "skyblue", "indigo", "goldenrod", "salmon", "pink",
"silver", "darkgreen", "lightcoral", "navy", "orchid", "steelblue", "saddlebrown",
"orange", "olive", "tan", "firebrick", "maroon", "darkslategray", "crimson", "dodgerblue", "aquamarine",
"b", "r", "g", "y", "c", "m", "skyblue", "indigo", "goldenrod", "salmon", "pink",
"silver", "darkgreen", "lightcoral", "navy", "orchid", "steelblue", "saddlebrown",
"orange", "olive", "tan", "firebrick", "maroon", "darkslategray", "crimson", "dodgerblue", "aquamarine"]
class Printer(object):
def __init__(self, is_datetime=True, store_length=100, n_digits=3):
"""
Args:
is_datetime: if True, will print the local date time, e.g. [2021-12-30 13:07:08], as prefix.
store_length: number of past time to store, for computing average time.
Returns:
None
"""
self.is_datetime = is_datetime
self.store_length = store_length
self.n_digits = n_digits
self.limit_list = []
def print(self, item, tabs=0, is_datetime=None, banner_size=0, end=None, avg_window=-1, precision="second", is_silent=False):
if is_silent:
return
string = ""
if is_datetime is None:
is_datetime = self.is_datetime
if is_datetime:
str_time, time_second = get_time(return_numerical_time=True, precision=precision)
string += str_time
self.limit_list.append(time_second)
if len(self.limit_list) > self.store_length:
self.limit_list.pop(0)
string += " " * tabs
string += "{}".format(item)
if avg_window != -1 and len(self.limit_list) >= 2:
string += " \t{0:.{3}f}s from last print, {1}-step avg: {2:.{3}f}s".format(
self.limit_list[-1] - self.limit_list[-2], avg_window,
(self.limit_list[-1] - self.limit_list[-min(avg_window+1,len(self.limit_list))]) / avg_window,
self.n_digits,
)
if banner_size > 0:
print("=" * banner_size)
print(string, end=end)
if banner_size > 0:
print("=" * banner_size)
try:
sys.stdout.flush()
except:
pass
def warning(self, item):
print(colored(item, 'yellow'))
try:
sys.stdout.flush()
except:
pass
def error(self, item):
raise Exception("{}".format(item))
def get_time(is_bracket=True, return_numerical_time=False, precision="second"):
"""Get the string of the current local time."""
from time import localtime, strftime, time
if precision == "second":
string = strftime("%Y-%m-%d %H:%M:%S", localtime())
elif precision == "millisecond":
string = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
if is_bracket:
string = "[{}] ".format(string)
if return_numerical_time:
return string, time()
else:
return string
p = Printer(n_digits=6)
def compute_orthonormal(boundary): ## set the ortho-normal values based on two points
r"""
Precompute orthonormal vectors on boundary nodes
Args:
boudary: boundary, shape=[number of boundary nodes, 2]
"""
# import pdb
# pdb.set_trace()
rolled_boundary = torch.roll(boundary, -1, 0)
length = (boundary - rolled_boundary).norm(dim=1) ## distance between two adjacent nodes
tx = (boundary[:, 0] - rolled_boundary[:, 0])/length ## x tangent
ty = (boundary[:, 1] - rolled_boundary[:, 1])/length ## y tangent
nx = ty
ny = -tx ## normal vector
center = (boundary + rolled_boundary)/2
return length, nx, ny, center
def linear_transform(pressure, center):
r"""
Compute magnitude of pressure on boundary nodes
Args:
pressure: pressure, shape=[width, height]
center: midpoints of adjacent nodes in boundary, shape=[#number of bounday points, 2]
"""
# flip_pressure = torch.flip(pressure, [0])
flip_pressure = pressure
device = flip_pressure.device
n, m = flip_pressure.shape
n = n #+ 2 #+ 2
m = m #+ 2 #+ 2
num_bound = center.shape[0]
# import pdb
# pdb.set_trace()
p_5 = torch.tensor([0.5], device=device).repeat(num_bound)
x = torch.minimum(torch.maximum(center[:, 0], p_5), torch.tensor([n-1.5], device=device).repeat(num_bound))
# print("x: ", x)
x_inds = torch.minimum(x.type(torch.int32), torch.tensor([n-2], device=device).repeat(num_bound))
fs = x - x_inds
y = torch.minimum(torch.maximum(center[:, 1], p_5), torch.tensor([m-1.5], device=device).repeat(num_bound))
y_inds = torch.minimum(y.type(torch.int32), torch.tensor([m-2], device=device).repeat(num_bound))
ft = y - y_inds
s_mask = (fs==0)
t_mask = (ft==0)
bd_mask = s_mask*t_mask
in_mask = torch.logical_not(bd_mask)
raw_force = torch.zeros(num_bound, dtype=torch.float32, device=device)
# raw_force[bd_mask] = flip_pressure[x_inds[bd_mask], y_inds[bd_mask]]
raw_force[bd_mask] = flip_pressure[y_inds[bd_mask], x_inds[bd_mask]]
t_weight = torch.stack([ft[in_mask], 1-ft[in_mask]], 0)
#column
# a_pipj = flip_pressure[x_inds[in_mask]+1, y_inds[in_mask]+1]
a_pipj = flip_pressure[y_inds[in_mask]+1, x_inds[in_mask]+1]
# a_pij = flip_pressure[x_inds[in_mask]+1, y_inds[in_mask]]
a_pij = flip_pressure[y_inds[in_mask], x_inds[in_mask]+1]
a_rowp1 = torch.stack([a_pipj, a_pij], 0)
sum_a_rowp1 = torch.sum(t_weight * a_rowp1, 0)
#row
# a_ipj = flip_pressure[x_inds[in_mask], y_inds[in_mask]+1]
a_ipj = flip_pressure[y_inds[in_mask]+1, x_inds[in_mask]]
# a_ij = flip_pressure[x_inds[in_mask], y_inds[in_mask]]
a_ij = flip_pressure[y_inds[in_mask], x_inds[in_mask]]
a_row = torch.stack([a_ipj, a_ij], 0)
sum_a_row = torch.sum(t_weight * a_row, 0)
s_weight = torch.stack([fs[in_mask], 1-fs[in_mask]], 0)
sum_two_rows = torch.stack([sum_a_rowp1, sum_a_row], 0)
raw_force[in_mask] = torch.sum(s_weight*sum_two_rows, 0)
return raw_force
def compute_pressForce(pressure, boundary):
r"""
Compute pressure of nodes along orthonormal vectors
Args:
pressure: predicted pressure of model, shape=[62, 62]
boundary: shape=[#number of boundary nodes, 2]
"""
length, nx, ny, cen = compute_orthonormal(boundary)
# import pdb
# pdb.set_trace()
pdl = linear_transform(pressure, cen)
# print("pdl: ", pdl)
pdl = pdl * length
return torch.sum(pdl*nx), torch.sum(pdl*ny)
def make_dir(filename):
"""Make directory using filename if the directory does not exist"""
import os
import errno
if not os.path.exists(os.path.dirname(filename)):
print("directory {0} does not exist, created.".format(os.path.dirname(filename)))
try:
os.makedirs(os.path.dirname(filename))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
print(exc)
raise
def get_item_1d(data, target):
"""
Get the 1d item suitable for diffusion.
Args:
data: PyG data class
target: choose from "x" and "y".
Returns:
x: has shape of [B, n_steps, n_bodies*feature_size], suitable for diffusion model
"""
# pdb.set_trace()
x = data[target] # [B*n_bodies, n_steps, feature_size]
batch_size = len(data.dyn_dims)
assert x.shape[0] % batch_size == 0
n_bodies = x.shape[0] // batch_size
n_steps, feature_size = x.shape[1:]
x = x.reshape(-1, n_bodies, n_steps, feature_size) / 200. # [B, n_bodies, n_steps, feature_size]
x = x.permute(0, 2, 1, 3) # [B, n_steps, n_bodies, feature_size]
x = torch.flatten(x, -2, -1) # [B, n_steps, n_bodies*feature_size]
return x
def get_item_1d_for_solver(data, target):
"""
Get the 1d item suitable for diffusion.
Args:
data: PyG data class
target: choose from "x" and "y".
Returns:
x: has shape of [B, n_steps, n_bodies*feature_size], suitable for diffusion model
"""
# pdb.set_trace()
x = data[target] # [B*n_bodies, n_steps, feature_size]
batch_size = len(data.dyn_dims)
assert x.shape[0] % batch_size == 0
n_bodies = x.shape[0] // batch_size
n_steps, feature_size = x.shape[1:]
x = x.reshape(-1, n_bodies, n_steps, feature_size) # [B, n_bodies, n_steps, feature_size]
x = x.permute(0, 2, 1, 3) # [B, n_steps, n_bodies, feature_size]
x = torch.flatten(x, -2, -1) # [B, n_steps, n_bodies*feature_size]
return x
def convert_softbd2hard(softbd):
r"""
Convert soft boundary whose value range between [0, 1] to solid boundary mask
Args:
softbd: grid with values ranging between 0 and 1
Output:
hardbd: grid with binary values, where 1 incidates existence of boundary
"""
ones = softbd > 0.5
zeros = softbd <= 0.5
hardbd = torch.zeros(softbd.shape, device=softbd.device)
hardbd[ones] = 1
hardbd[zeros] = 0
return hardbd
def find_isolated_points(grid):
isolated_points = []
rows, cols = grid.shape
# Define possible neighboring cell offsets
neighbors = [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)]
for r in range(rows):
for c in range(cols):
current_cell = grid[r, c]
if current_cell == 1:
is_isolated = True
if (r in [0, rows-1]) or (c in [0, cols-1]):
if (r in [0, rows-1]) and (c in [0, cols-1]):
n = 3
else:
n = 5
else:
n = 8
j = 0
for dr, dc in neighbors:
nr, nc = r + dr, c + dc
# Check if the neighboring cell is inside the grid
if 0 <= nr < rows and 0 <= nc < cols:
neighbor_cell = grid[nr, nc]
# Check if the neighboring cell has the same value
if current_cell == neighbor_cell:
# is_isolated = False
# break
continue
else:
j += 1
if n == 8 and j >= 7:
isolated_points.append((r, c))
break
elif n == 5 and j >= 4:
isolated_points.append((r, c))
break
elif n == 3 and j >= 2:
isolated_points.append((r, c))
break
# if is_isolated and current_cell != 0:
# isolated_points.append((r, c))
return isolated_points
def filter_isolated_points(hard_boundary):
iso_points = find_isolated_points(hard_boundary)
# print(iso_points)
while (len(iso_points) != 0):
index_tensor = torch.tensor(iso_points, dtype=torch.long, device=hard_boundary.device).t()
values = torch.zeros(index_tensor.shape[1], device=hard_boundary.device)
# Update the tensor with new values according to the indices
hard_boundary.index_put_((index_tensor[0], index_tensor[1]), values)
iso_points = find_isolated_points(hard_boundary)
# print(iso_points)
# break
return hard_boundary
def find_clusters(hard_boundary):
# Find the non-zero grid cells
non_zero_cells = np.argwhere(hard_boundary.detach().cpu().numpy() != 0)
# Create the DBSCAN clustering model
dbscan = DBSCAN(eps=1.5, min_samples=2)
# Fit the model to the non-zero grid cells
labels = dbscan.fit_predict(non_zero_cells)
clustered_grid = np.zeros_like(hard_boundary)
for cell, label in zip(non_zero_cells, labels):
clustered_grid[tuple(cell)] = label + 1
# print(clustered_grid)
return clustered_grid
def find_filtered_clusteres(hard_boundary, is_plot_clusters=False):
clustered_grid = find_clusters(hard_boundary)
# clustered_grid
if is_plot_clusters:
fig, ax = plt.subplots(figsize=(4,4), ncols=1)
mappable0 = ax.imshow(clustered_grid, cmap='viridis',
#extent=[0,sensordata.shape[0],0,sensordata.shape[1]],
#interpolation="bicubic",
aspect='auto'
) #,
#origin='lower')
fig.colorbar(mappable0, ax=ax)
fig.tight_layout()
plt.show()
hard_boundary = filter_isolated_points(hard_boundary)
# print(np_clustered_grid)
rd_clustered_grid = find_clusters(hard_boundary)
# clustered_grid
if is_plot_clusters:
fig, ax = plt.subplots(figsize=(4,4), ncols=1)
mappable0 = ax.imshow(rd_clustered_grid, cmap='viridis',
#extent=[0,sensordata.shape[0],0,sensordata.shape[1]],
#interpolation="bicubic",
aspect='auto'
) #,
#origin='lower')
fig.colorbar(mappable0, ax=ax)
fig.tight_layout()
plt.show()
return rd_clustered_grid
from collections import deque
def find_starting_point(grid):
for i, row in enumerate(grid):
for j, cell in enumerate(row):
if cell == 1:
return i, j
return None
def is_valid_move(x, y, grid):
return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and grid[x][y] == 1
def is_boundary(x, y, grid):
moves = [(1, 0), (-1, 0), (0, 1), (0, -1), (1, 1), (1, -1), (-1, 1), (-1, -1)]
for dx, dy in moves:
nx, ny = x + dx, y + dy
if not is_valid_move(nx, ny, grid):
return True
return False
def bfs_boundary_detection_without_intersection(start_x, start_y, grid):
visited = [[False] * len(grid[0]) for _ in range(len(grid))]
boundary = []
queue = deque([(start_x, start_y)])
moves = [(1, 0), (-1, 0), (0, 1), (0, -1), (1, 1), (1, -1), (-1, 1), (-1, -1)]
while queue:
x, y = queue.popleft()
if visited[x][y]:
continue
visited[x][y] = True
if is_boundary(x, y, grid):
boundary.append((x, y))
for dx, dy in moves:
nx, ny = x + dx, y + dy
if is_valid_move(nx, ny, grid) and not visited[nx][ny]:
queue.append((nx, ny))
return boundary
# Identify the non-dominated solutions
def find_pareto_frontier(objective_values):
pareto_frontier1 = []
for i, values1 in enumerate(objective_values):
dominated = False
for j, values2 in enumerate(objective_values):
if all(values1 <= values2) and any(values1 < values2):
dominated = True
break
if not dominated:
pareto_frontier1.append(values1)
np_pareto_frontier1 = np.array(pareto_frontier1)
np_pareto_frontier1 = np_pareto_frontier1[np_pareto_frontier1[:, 0].argsort()]
# paretor_frontier1 = np_pareto_frontier1.tolist()
flip_objective_values = np.copy(objective_values)
flip_objective_values[:,0] = -flip_objective_values[:,0]
# print(flip_objective_values)
pareto_frontier2 = []
for i, values1 in enumerate(flip_objective_values):
dominated = False
for j, values2 in enumerate(flip_objective_values):
if all(values2 <= values1) and any(values2 < values1):
dominated = True
break
if not dominated:
# print(values1)
cpvalues1 = np.copy(values1)
cpvalues1[0] = -cpvalues1[0]
pareto_frontier2.append(cpvalues1)
np_pareto_frontier2 = np.array(pareto_frontier2)
np_pareto_frontier2 = np_pareto_frontier2[np.flip(np_pareto_frontier2[:, 0].argsort())]
# paretor_frontier2 = np_pareto_frontier2.tolist()
pareto_frontier3 = []
for i, values1 in enumerate(objective_values):
dominated = False
for j, values2 in enumerate(objective_values):
if all(values2 <= values1) and any(values2 < values1):
dominated = True
break
if not dominated:
pareto_frontier3.append(values1)
np_pareto_frontier3 = np.array(pareto_frontier3)
np_pareto_frontier3 = np_pareto_frontier3[np.flip(np_pareto_frontier3[:, 0].argsort())]
# paretor_frontier3 = np_pareto_frontier3.tolist()
flip_objective_values = np.copy(objective_values)
flip_objective_values[:,0] = -flip_objective_values[:,0]
pareto_frontier4 = []
for i, values1 in enumerate(flip_objective_values):
dominated = False
for j, values2 in enumerate(flip_objective_values):
if all(values1 <= values2) and any(values1 < values2):
dominated = True
break
if not dominated:
cpvalues1 = np.copy(values1)
cpvalues1[0] = -cpvalues1[0]
pareto_frontier4.append(cpvalues1)
np_pareto_frontier4 = np.array(pareto_frontier4)
np_pareto_frontier4 = np_pareto_frontier4[np_pareto_frontier4[:, 0].argsort()]
# paretor_frontier4 = np_pareto_frontier4.tolist()
org_pareto_frontier = np.concatenate([np_pareto_frontier1, np_pareto_frontier2, np_pareto_frontier3, np_pareto_frontier4], axis=0)
index_hash = 100*org_pareto_frontier[:,0] + org_pareto_frontier[:,1]
unique_index = np.unique(index_hash, return_index=True)[1]
pareto_frontier = [org_pareto_frontier[index] for index in sorted(unique_index)]
# print(pareto_frontier)
new_pareto_frontier = [pt for pt in pareto_frontier]
put_values = []
put_indices = []
for i in range(len(pareto_frontier)):
dir_x = pareto_frontier[i%len(pareto_frontier)][0] - pareto_frontier[(i+1)%len(pareto_frontier)][0]
dir_y = pareto_frontier[i%len(pareto_frontier)][1] - pareto_frontier[(i+1)%len(pareto_frontier)][1]
if dir_y == 0:
if dir_x > 1:
for k in range(1, int(dir_x)):
put_values.append([pareto_frontier[i%len(pareto_frontier)][0] - k, pareto_frontier[i%len(pareto_frontier)][1]])
put_indices.append(i+1)
elif dir_x < -1:
# print("hey")
for k in range(1, -int(dir_x), 1):
put_values.append([pareto_frontier[i%len(pareto_frontier)][0] + k, pareto_frontier[i%len(pareto_frontier)][1]])
put_indices.append(i+1)
elif dir_x == 0:
if dir_y > 1:
for k in range(1, int(dir_y)):
put_values.append([pareto_frontier[i%len(pareto_frontier)][0], pareto_frontier[i%len(pareto_frontier)][1] - k])
put_indices.append(i+1)
elif dir_y < -1:
for k in range(1, -int(dir_y), 1):
put_values.append([pareto_frontier[i%len(pareto_frontier)][0], pareto_frontier[i%len(pareto_frontier)][1] + k])
put_indices.append(i+1)
if len(put_indices) > 0:
final_pareto = np.insert(np.array(pareto_frontier), put_indices, put_values, axis=0)
return final_pareto
return np.array(pareto_frontier)
def find_cluster_boundary(np_clustered_grid, is_boundary_plot=False):
num_cluster = int(np_clustered_grid.max())
boundaries = []
for i in range(num_cluster):
cp_clustered_grid = np_clustered_grid.copy()
single_clustered_grid = np.where(cp_clustered_grid==i+1, 1, 0).tolist()
# print(clustered_grid)
# plt.scatter(np.array(clustered_grid)[:,1], np.array(clustered_grid)[:,0])
# plt.show()
starting_point = find_starting_point(single_clustered_grid)
# print(starting_point)
# visited = [[False] * len(grid[0]) for _ in range(len(grid))]
boundary = bfs_boundary_detection_without_intersection(starting_point[0], starting_point[1], single_clustered_grid)
# print(boundary)
np_boundary = np.array(boundary)
if is_boundary_plot:
plt.scatter(np_boundary[:,1], np_boundary[:,0])
plt.show()
objective_values = np_boundary
pareto_frontier = find_pareto_frontier(objective_values)
pareto_frontier = np.fliplr(pareto_frontier)[::-1]
boundaries.append(pareto_frontier)
# Plot the solutions and the Pareto frontier
if is_boundary_plot:
plt.scatter(objective_values[:, 1], objective_values[:, 0], label='Solid Points', marker='o')
plt.scatter(pareto_frontier[:, 0], pareto_frontier[:, 1], label='Solid Boundary', marker='x', color='red')
plt.plot(pareto_frontier[:, 0], pareto_frontier[:, 1])
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
print(pareto_frontier)
np.unique(pareto_frontier, axis=0, return_counts=True)
return boundaries
def compute_binary_pressForce(pressure, np_clustered_grid, is_boundary_plot=False):
r"""
Compute force on binary boundary mask
Args:
pressure: 2d tensor, each element represents pressure on a cell.
np_clustered_grid: Numpy mask whose cells represent multiple solids. The shape is same as pressure.
Values of cells are integers and cells with a same value belong to a same solid.
This can be either bounary mask and derived from find_filtered_clusteres function.
"""
# Compute the boundary of all solids in binary_boundary_mask
# pdb.set_trace()
final_boundaries = find_cluster_boundary(np_clustered_grid, is_boundary_plot=is_boundary_plot)
# Compute force of boundary of each multiple solid
pressures = {}
for i in range(len(final_boundaries)):
boundary = final_boundaries[i]
# Compute force
pressures[i+1] = compute_pressForce(pressure, torch.tensor(boundary.copy(), device=pressure.device)+0.5)
return pressures
def reconstruct_boundary(binary_mask, bd_offset):
r"""
Restore boundary points from binary mask and boundary offset
Args:
binary_mask: 2d torch tensor, represented by binary values. Expected shape is [62, 62].
bd_offset: 3d torch tensor, grid structure each of whose cells is represented by 2d vector.
Expected shape is [62, 62, 2]
Limitation:
Multiple boundaries are not out of the scope at this moment.
The number of points of the ouput is not consistent with the shape of original boundary (= 40)
"""
# Find boundary of object in boundary mask
np_binary_mask = binary_mask.cpu().numpy()
boundary_bd = find_cluster_boundary(np_binary_mask)[0]
# Retrieve offset vectors on boundary_bd and boundary value
np_offset = bd_offset.cpu().numpy()
new_np_offset = np_offset[boundary_bd[:,1], boundary_bd[:,0], :]
restored_boundary = (boundary_bd + 0.5) + new_np_offset
return restored_boundary
m = 64; n = 64
maxnum = 100
def discretize_boundary(boundary):
# import pdb
# pdb.set_trace()
assert boundary.shape[1] == 2
num_bound = boundary.shape[0]
device = boundary.device
p_5 = torch.tensor([0.5], device=device).repeat(num_bound)
x = torch.minimum(torch.maximum(boundary[:, 0], p_5), torch.tensor([n-1.5], device=device).repeat(num_bound))
x_inds = torch.minimum(x.type(torch.int32), torch.tensor([n-2], device=device).repeat(num_bound))
# fs = x - x_inds
y = torch.minimum(torch.maximum(boundary[:, 1], p_5), torch.tensor([m-1.5], device=device).repeat(num_bound))
y_inds = torch.minimum(y.type(torch.int32), torch.tensor([m-2], device=device).repeat(num_bound))
# ft = y - y_inds
return x_inds, y_inds
def find_orthogonal_line(A, B, C, x0, y0):
m1 = torch.empty((C.shape[0],), device=C.device)
m1[B==0] = float('inf')
m1[B!=0] = (-A/B)[B!=0]
m2 = torch.empty((C.shape[0],), device=C.device)
m2[m1==float('inf')] = 0
m2[m1!=float('inf')] = (-1 / m1)[m1!=float('inf')]
b2 = y0 - m2 * x0 # The y-intercept of L2.
# Return the coefficients A, B, C of the line L2 (Ax + By - C = 0)
return m2, -1, b2
def edge_cells(polygon):
num_vertices = len(polygon)
edges = []
for i in range(num_vertices):
v1 = polygon[i]
v2 = polygon[(i + 1) % num_vertices]
edge = sorted([v1, v2], key=lambda x: x[1])
edges.append(edge)
return edges
def find_cells_inside_curve(polygon, grid_shape):
def horizontal_intersection(x1, y1, x2, y2, y):
return x1 + (y - y1) * (x2 - x1) / (y2 - y1)
edges = edge_cells(polygon)
grid = np.zeros(grid_shape, dtype=np.uint8)
height, width = grid.shape
for y in range(height):
intersections = []
for edge in edges:
y1, y2 = edge[0][1], edge[1][1]
if y1 < y <= y2:
x = horizontal_intersection(*edge[0], *edge[1], y)
intersections.append(x)
intersections.sort()
for i in range(0, len(intersections), 2):
x_start, x_end = int(np.ceil(intersections[i])), int(np.floor(intersections[i + 1]))
grid[y, x_start : x_end + 1] = 1
return grid
def update_static_masks(torch_con_boundary):
# import pdb
# pdb.set_trace()
x_inds, y_inds = discretize_boundary(torch_con_boundary)
pointy_hash = maxnum*x_inds[20] + y_inds[20]
indices = torch.stack((maxnum*x_inds,y_inds), 0)
sum_indices = indices.sum(0)
ind_unique = torch.unique(sum_indices, sorted=True) #, return_inverse=True)
x_idx = (torch.cat([(sum_indices==ind_u).nonzero()[0] for ind_u in ind_unique])).sort()[0]
# print(sum_indices[x_idx])
# print(x_idx)
repeat_sum_indices = torch.tile(sum_indices, (ind_unique.shape[0],1))
repeat_ind_unique = torch.tile(sum_indices[x_idx].reshape(ind_unique.shape[0], 1), (1, sum_indices.shape[0]))
org_mask = (repeat_ind_unique == repeat_sum_indices)
fatted_mask = torch.roll(org_mask, 1, 1) + torch.roll(org_mask, -1, 1)
relvecs = []
base_pts = []
base_nums = []
for bdpt in range(sum_indices[x_idx].shape[0]):
# i = 1
if pointy_hash == sum_indices[x_idx][bdpt]:
base_pt = torch.stack([x_inds[org_mask[bdpt]][0], y_inds[org_mask[bdpt]][0]]) + 0.5
base_pts.append(base_pt)
relvec = torch_con_boundary[20] - base_pt
relvecs.append(relvec)
# base_nums.append(i)
elif torch.sum(org_mask[bdpt]) >= 4:
base_pt = torch.stack([x_inds[org_mask[bdpt]][0], y_inds[org_mask[bdpt]][0]]) + 0.5
base_pts.append(base_pt)
relvec = torch_con_boundary[org_mask[bdpt]] - base_pt.repeat(torch_con_boundary[org_mask[bdpt]].shape[0], 1)
ind = torch.argmin(torch.norm(relvec, dim=1))
relvecs.append(relvec[ind])
# base_nums.append(i)
elif torch.sum(fatted_mask[bdpt] * torch.logical_not(org_mask[bdpt])) > 2:
base_pt = torch.stack([x_inds[org_mask[bdpt]][0], y_inds[org_mask[bdpt]][0]]) + 0.5
# base_pts.append(base_pt)
relvec = torch_con_boundary[org_mask[bdpt]] - base_pt.repeat(torch_con_boundary[org_mask[bdpt]].shape[0], 1)
# print("disjoint: ", relvec)
if len(relvec.shape) == 2:
import pdb
# pdb.set_trace()
# for i in range(xbound[org_mask[bdpt]].shape[0]):
# if 2 * i + 2 == bd_points.shape[0]:
# print("mask:", org_mask[bdpt])
# print(xbound[org_mask[bdpt]])
# plt.plot(xbound[org_mask[bdpt]][:, 0].numpy(), xbound[org_mask[bdpt]][:, 1].numpy())
# # else:
# # plt.plot(bd_points[2*i:2*i+2, 0].numpy(), bd_points[2*i:2*i+2, 1].numpy())
# plt.scatter(base_pt[0].numpy(), base_pt[1].numpy())
# plt.show()
# for i in range(relvec.shape[0]):
# row_relvec = relvec[i]
# relvecs.append(row_relvec)
# base_pts.append(base_pt)
# i += 1
relvecs.append(relvec[-1])
base_pts.append(base_pt)
# base_nums.append(i)
else:
relvecs.append(relvec)
base_pts.append(base_pt)
# base_nums.append(i)
elif torch.sum(org_mask[bdpt]) == 1:
base_pt = torch.stack([x_inds[org_mask[bdpt]][0], y_inds[org_mask[bdpt]][0]]) + 0.5
base_pts.append(base_pt)
relvec = torch_con_boundary[org_mask[bdpt]] - base_pt
# print("rel: ", relvec[0])
relvecs.append(relvec[0])
# base_nums.append(i)
else:
if fatted_mask[bdpt][0] and fatted_mask[bdpt][-1]:
rollnum = 1
for _ in range(0, 100):
temprole = torch.roll(fatted_mask[bdpt], rollnum, 0)
if temprole[0] and temprole[-1]:
rollnum += 1
else:
break
#import pdb
#pdb.set_trace()
x_pts = torch.roll(torch_con_boundary[fatted_mask[bdpt]], rollnum, 0)
else:
x_pts = torch_con_boundary[fatted_mask[bdpt]]
bd_points = torch.cat([x_pts[0:1], x_pts[1:-1].repeat(1, 2).reshape(-1,2), x_pts[-1:]], dim=0)
dire_vec = bd_points[0::2] - bd_points[1::2]
const = bd_points[0::2, 1] - bd_points[0::2, 0] * dire_vec[:,1]/dire_vec[:,0]
base_pt = torch.stack([x_inds[org_mask[bdpt]][0], y_inds[org_mask[bdpt]][0]]) + 0.5
base_pts.append(base_pt)
# base_nums.append(i)
base_points = base_pt.repeat(const.shape[0], 1)
slope = dire_vec[:,1]/dire_vec[:,0]
# import pdb
# pdb.set_trace()
ax, by, con = find_orthogonal_line(slope, -torch.ones((const.shape[0],), device=torch_con_boundary.device), const, base_points[:,0], base_points[:,1])
# for i in range(int(bd_points.shape[0]/2)):
# if 2 * i + 2 == bd_points.shape[0]:
# plt.plot(bd_points[2*i:, 0].numpy(), bd_points[2*i:, 1].numpy())
# else:
# plt.plot(bd_points[2*i:2*i+2, 0].numpy(), bd_points[2*i:2*i+2, 1].numpy())
# plt.scatter(base_pt[0].numpy(), base_pt[1].numpy())
# plt.show()
al = -ax/by
bl = con
cl = dire_vec[:,1]/dire_vec[:,0]
dl = const
# print(org_mask[bdpt,:])
intersection = torch.stack([(dl - bl)/(al - cl), (al*dl - bl*cl)/(al - cl)]).t()
# print(intersection)
# print(base_pt)
relvec = intersection - torch.tile(base_pt, (intersection.shape[0], 1))
#print(relvec.sum(0)/relvec.shape[0])
relvecs.append(relvec.sum(0)/relvec.shape[0])
### Check number of offset vectors is same as that of boundary cells of solid
# print(len(base_pts), sum_indices[x_idx].shape[0])
assert len(base_pts) == sum_indices[x_idx].shape[0]
# import pdb
# pdb.set_trace()
bd_offset = torch.stack(relvecs)
offset_grid_bound = torch.zeros((62, 62, 2), device=torch_con_boundary.device)
offset_grid_bound[x_inds, y_inds] = torch.tensor([1, 1], dtype=torch.float32, device=torch_con_boundary.device)
offset_grid_bound = offset_grid_bound.transpose(1,0)
# offset_grid = find_cells_inside_curve(torch.stack((x_inds, y_inds), -1).tolist(), grid_bound.shape)
offset_grid = find_cells_inside_curve(torch.stack((x_inds, y_inds), -1).detach().cpu().tolist(), (62, 62))
# fig, ax = plt.subplots(figsize=(4,4), ncols=1)
# ax.imshow(offset_grid, cmap='viridis',
# aspect='auto',
# origin='lower')
# plt.show()
inner_solid_mask = np.copy(offset_grid)
offset_grid = offset_grid.reshape(62, 62, 1)
offset_grid = np.concatenate([offset_grid, offset_grid], -1)
offset_union = offset_grid_bound + torch.tensor(offset_grid, device=torch_con_boundary.device)
offset_union[(offset_union.sum(-1) > 2),:] = torch.tensor([1, 1], dtype=torch.float32, device=torch_con_boundary.device)
offset_union.index_put_((y_inds[x_idx], x_inds[x_idx]), bd_offset)
# np_offset_union = offset_union.detach().cpu().numpy()
# fig, ax = plt.subplots(figsize=(4,4), ncols=1)
# ax.imshow(np_offset_union[...,1], cmap='viridis',
# aspect='auto',
# origin='lower')
# plt.show()
# gtmask = data.node_feature["n0"][:,0,2].reshape(62,62).detach().cpu().numpy()
# fig, ax = plt.subplots(figsize=(4,4), ncols=1)
# ax.imshow(gtmask, cmap='viridis',
# aspect='auto',
# origin='lower')
# plt.show()
# print((data.node_feature["n0"][:,-1,1].reshape(62,62).detach().cpu().numpy() - np_offset_union[...,0]).sum())
# print((data.node_feature["n0"][:,-1,2].reshape(62,62).detach().cpu().numpy() - np_offset_union[...,1]).sum())
# updated_offset_mask = np_offset_union
grid_bound = torch.zeros((62, 62), device=torch_con_boundary.device)
grid_bound[x_inds, y_inds] = 1
# union = grid_bound.transpose(1,0).detach().cpu().numpy() + inner_solid_mask
union = grid_bound.transpose(1,0) + torch.tensor(inner_solid_mask, device=torch_con_boundary.device)
union[union == 2] = 1
# fig, ax = plt.subplots(figsize=(8,4), ncols=2)
# ax[0].imshow(union.flatten().reshape(62,62), cmap='viridis',
# aspect='auto',
# origin='lower')
# ax[1].imshow(data.node_feature["n0"][:,-1,0].reshape(62,62).detach().cpu().numpy(), cmap='viridis',
# aspect='auto',
# origin='lower')
# plt.show()
# print((data.node_feature["n0"][:,-1,0].reshape(62,62).detach().cpu().numpy() - union).sum())
updated_solid_mask = union
return updated_solid_mask, offset_union #updated_offset_mask
def update_bdfeature(reconstructed_boundary):
upd_solid_mask, upd_solid_offset = update_static_masks(reconstructed_boundary)
torch_batch_mask = torch.where(upd_solid_mask==1, False, True).clone().flatten()
upd_solid_mask = upd_solid_mask[...,None]
static_feature = torch.cat((upd_solid_mask, upd_solid_offset), -1)
multi_static_feat = torch.stack([static_feature for _ in range(4)], -2).reshape(-1,4,3)
return multi_static_feat, torch_batch_mask
def update_data(reconstructed_bound, optimdata, original_data, constant_var, opt_var):
mul_static_feat, tor_batch_mask = update_bdfeature(reconstructed_bound)
a = deepsnap_Batch
batch, _ = a._init_batch_fields(optimdata.keys, [])
batch.batch = optimdata.batch.clone()
batch.compute_func = optimdata.compute_func
batch.directed = optimdata.directed.detach().clone()
batch.dyn_dims = optimdata.dyn_dims
batch.edge_attr = optimdata.edge_attr
batch.edge_index = {('n0','0','n0'): optimdata.edge_index[('n0','0','n0')].detach().clone()}
batch.edge_label_index = {('n0','0','n0'): optimdata.edge_label_index[('n0','0','n0')].detach().clone()}
batch.grid_keys = optimdata.grid_keys
batch.mask = {"n0": tor_batch_mask.detach()}
batch.node_feature = {"n0": torch.cat((mul_static_feat, original_data.node_feature["n0"][...,3:].detach()), -1)}
batch.node_label = {"n0": optimdata.node_label["n0"].detach().clone()}
batch.node_label_index = {"n0": optimdata.node_label_index["n0"].detach().clone()}
batch.node_pos = {"n0": optimdata.node_pos["n0"].detach().clone()}
batch.original_shape = optimdata.original_shape
batch.param = {"n0": torch.cat((constant_var, opt_var), 0).transpose(1,0).flatten()[None,:]}
batch.params = optimdata.params
batch.part_keys = optimdata.part_keys
batch.task = optimdata.task
optimdata = batch
return optimdata
import random
class CustomSampler(Sampler):
def __init__(self, data,batch_size,noncollision_hold_probability,distance_threshold):
self.data = data
self.batch_size=batch_size
self.noncollision_hold_probability=noncollision_hold_probability
self.distance_threshold=distance_threshold
def __iter__(self):
indices = []
p_list=[]
j_list=[]
dis_list=[]
Flag=0
num1=0
num2=0
distance=0.
distance2=0.
seed = 42
random.seed(seed)
# pdb.set_trace()
#preprocess data to get sampleing index for more collisions
# for i in range(self.data.len()):
# Flag=0
# data=self.data[i]
# data=torch.cat([data.x,data.y],dim=1)
# for j in range(data.shape[1]):
# distance=torch.sqrt((data[0,j,0]-data[1,j,0])**2+(data[0,j,1]-data[1,j,1])**2)
# distance_body1_wall_min=min([data[0,j,0],200-data[0,j,0],data[0,j,1],200-data[0,j,1]])
# distance_body2_wall_min=min([data[1,j,0],200-data[1,j,0],data[1,j,1],200-data[1,j,1]])
# if distance<=self.distance_threshold: # the collision between body1 and body2
# Flag=1
# num1=num1+1
# break
# if (distance_body1_wall_min<self.distance_threshold/2.0) or (distance_body2_wall_min<self.distance_threshold/2.0): # the collision between body and wall
# Flag=1
# num2=num2+1
# break
# p=random.uniform(0, 1)
# p_list.append(p)
# if p<self.noncollision_hold_probability:
# Flag=1
# if Flag==1:
# indices.append(i)
# indices_np=np.load("/user/project/inverse_design/dataset/nbody_dataset/nbody-2/customerSampler_indices.npy")
indices_np=torch.arange(0, 300000, 1, dtype=torch.int)
indices=indices_np
random.shuffle(indices)
indices = torch.tensor(indices)
self.indices=indices
# pdb.set_trace()
# indices_np=np.array(indices)# around 1/3 datas can be selected of raw dataset ,so in order to have the same size dataset finally,I just make the larger raw dataset by doing 6000 simulations(3 times of 2000 before)
# np.save("/user/project/inverse_design/dataset/nbody_dataset/nbody-4/speed-100/customerSampler_indices.npy",indices_np)
return iter(indices)
def __len__(self):
return len(self.indices)
import torch.nn as nn
class CustomLoss(nn.Module):
def __init__(self):
super(CustomLoss, self).__init__()
def forward(self, predicted, target):
# pdb.set_trace()
loss = torch.abs(predicted - target)
predicted_reshape=predicted.reshape(predicted.shape[0],predicted.shape[1],int(predicted.shape[2]/4),4)
target_reshape=target.reshape(target.shape[0],target.shape[1],int(target.shape[2]/4),4)
loss2=torch.abs((predicted_reshape[:,:,:,2])**2+(predicted_reshape[:,:,:,3])**2-((target_reshape[:,:,:,2])**2+(target_reshape[:,:,:,3])**2)).reshape(loss.shape[0],loss.shape[1],2,1)
# loss3=torch.abs(torch.atan(predicted_reshape[:,:,:,2]/(predicted_reshape[:,:,:,3]))-torch.atan(target_reshape[:,:,:,2]/target_reshape[:,:,:,3])).reshape(loss.shape[0],loss.shape[1],2,1)/(3.1415926*2)
return torch.cat([loss.reshape(loss.shape[0],loss.shape[1],2,int(loss.shape[2]/2)),loss2],dim=3)
import matplotlib
def visulization(filename,cond,pred,n_bodies,conditioned_steps,rollout_steps,num_features):
pdf = matplotlib.backends.backend_pdf.PdfPages(filename)
fontsize = 16
for i in range(1):
i=i*1
fig = plt.figure(figsize=(18,15))
if conditioned_steps!=0:
cond_reshape = cond.reshape(cond.shape[0], conditioned_steps, n_bodies,num_features).to('cpu')
pred_reshape = pred.reshape(cond.shape[0], rollout_steps, n_bodies,num_features).to('cpu')
# y_gt_reshape = y_gt.reshape(cond.shape[0], rollout_steps, n_bodies,num_features)
for j in range(n_bodies):
# cond:
if conditioned_steps!=0:
marker_size_cond = np.linspace(1, 2, conditioned_steps) * 100
plt.plot(cond_reshape[i,:,j,0], cond_reshape[i,:,j,1], color=COLOR_LIST[j], linestyle="--")
plt.scatter(cond_reshape[i,:,j,0], cond_reshape[i,:,j,1], color=COLOR_LIST[j], marker="+", linestyle="--", s=marker_size_cond)
# # y_gt:
# marker_size_y_gt = np.linspace(2, 3, rollout_steps) * 100
# plt.plot(y_gt_reshape[i,:,j,0], y_gt_reshape[i,:,j,1], color=COLOR_LIST[j], linestyle="-.")
# plt.scatter(y_gt_reshape[i,:,j,0], y_gt_reshape[i,:,j,1], color=COLOR_LIST[j], marker=".", linestyle="-.", s=marker_size_y_gt)
# pred:
marker_size_pred = np.linspace(2, 3, rollout_steps) * 100
plt.plot(pred_reshape[i,:,j,0], pred_reshape[i,:,j,1], color=COLOR_LIST[j], linestyle="-")
plt.scatter(pred_reshape[i,:,j,0], pred_reshape[i,:,j,1], color=COLOR_LIST[j], marker="v", linestyle="-", s=marker_size_pred)
plt.xlim([0,1])
plt.ylim([0,1])
# loss_item = (pred[i] - y_gt[i]).abs().mean().item()
plt.title(f"reverse", fontsize=fontsize)
plt.tick_params(labelsize=fontsize)
pdf.savefig(fig)
i=i/1
pdf.close()
import argparse
import numpy as np
import pprint as pp
import pymunk