-
Notifications
You must be signed in to change notification settings - Fork 0
/
BE_MPNN.py
317 lines (255 loc) · 10.2 KB
/
BE_MPNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from typing import List
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
from transformer import *
import pdb
def build_mlp(
input_size: int,
hidden_layer_sizes: List[int],
output_size: int = None,
output_activation: nn.Module = nn.Identity,
activation: nn.Module = nn.ReLU) -> nn.Module:
# Size of each layer
layer_sizes = [input_size] + hidden_layer_sizes
if output_size:
layer_sizes.append(output_size)
# Number of layers
nlayers = len(layer_sizes) - 1
# Create a list of activation functions and
# set the last element to output activation function
act = [activation for i in range(nlayers)]
act[-1] = output_activation
# Create a torch sequential container
mlp = nn.Sequential()
for i in range(nlayers):
mlp.add_module("NN-" + str(i), nn.Linear(layer_sizes[i],
layer_sizes[i + 1]))
mlp.add_module("Act-" + str(i), act[i]())
return mlp
class Encoder(nn.Module):
def __init__(
self,
nnode_in_features: int,
nnode_out_features: int, #latent dim=128
nedge_in_features: int,
nedge_out_features: int,
nmlp_layers: int,
mlp_hidden_dim: int,
activation:nn.Module,):
super(Encoder, self).__init__()
# Encode node features as an MLP
self.node_fn = nn.Sequential(*[build_mlp(nnode_in_features,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nnode_out_features,activation=activation),
nn.LayerNorm(nnode_out_features)])
# Encode edge features as an MLP
self.edge_fn = nn.Sequential(*[build_mlp(nedge_in_features,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nedge_out_features,activation=activation),
nn.LayerNorm(nedge_out_features)])
self.node_fn_inbd = nn.Sequential(*[build_mlp(nnode_in_features,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nnode_out_features,activation=activation),
nn.LayerNorm(nnode_out_features)])
self.edge_fn_inbd = nn.Sequential(*[build_mlp(nedge_in_features,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nedge_out_features,activation=activation),
nn.LayerNorm(nedge_out_features)])
def forward(
self,
x: torch.tensor,
edge_features: torch.tensor,
x_inbd:torch.tensor,
edge_inbd_features: torch.tensor):
return self.node_fn(x), self.edge_fn(edge_features), self.node_fn_inbd(x_inbd), self.edge_fn_inbd(edge_inbd_features)
class InteractionNetwork(MessagePassing):
def __init__(
self,
nnode_in: int,
nnode_out: int,
nedge_in: int,
nedge_out: int,
nmlp_layers: int,
mlp_hidden_dim: int,
boundary_dim: int,
trans_layer:int,
activation: nn.Module = nn.ReLU
):
# Aggregate features from neighbors
super(InteractionNetwork, self).__init__(aggr='mean')
# Node MLP
self.node_fn = nn.Sequential(*[build_mlp(nnode_in + nedge_out + boundary_dim,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nnode_out,activation=activation),
nn.LayerNorm(nnode_out)])
self.edge_fn = nn.Sequential(*[build_mlp(nnode_in + nnode_in + nedge_in,
[mlp_hidden_dim
for _ in range(nmlp_layers)],
nedge_out,activation=activation),
nn.LayerNorm(nedge_out)])
#boundary
self.boundary_fn = Transformer(enc_in = 3, d_model = boundary_dim, n_heads = 2, enc_layers = trans_layer)
def forward(self,
x: torch.tensor,
edge_index: torch.tensor,
edge_features: torch.tensor,
boundary: torch.tensor,
):
boundary = boundary.unsqueeze(0).float()
boundary = self.boundary_fn(boundary)
x_residual = x.clone()
edge_features_residual = edge_features.clone()
x, edge_features = self.propagate(
edge_index=edge_index, x=x, edge_features=edge_features, boundary=boundary)
return x + x_residual, edge_features + edge_features_residual
def message(self,
x_i: torch.tensor,
x_j: torch.tensor,
edge_features: torch.tensor,
boundary: torch.tensor
) -> torch.tensor:
# Concat edge features with a final shape of [nedges, latent_dim*3]
edge_features = torch.cat([x_i, x_j, edge_features], dim=-1)
edge_features = self.edge_fn(edge_features)
return edge_features
def update(self,
x_updated: torch.tensor,
x: torch.tensor,
edge_features: torch.tensor,
boundary: torch.tensor
):
# Concat node features with a final shape of
boundary_all = boundary.repeat(x.shape[0], 1)
x_updated = torch.cat([x_updated, x,boundary_all], dim=-1)
x_updated = self.node_fn(x_updated)
return x_updated, edge_features
class Processor(MessagePassing):
def __init__(
self,
nnode_in: int,
nnode_out: int,
nedge_in: int,
nedge_out: int,
nmessage_passing_steps: int,
nmlp_layers: int,
mlp_hidden_dim: int,
boundary_dim: int,
trans_layer:int,
activation:nn.Module
):
super(Processor, self).__init__(aggr='mean')
# Create a stack of M Graph Networks GNs.
self.gnn_stacks = nn.ModuleList([
InteractionNetwork(
nnode_in=nnode_in,
nnode_out=nnode_out,
nedge_in=nedge_in,
nedge_out=nedge_out,
nmlp_layers=nmlp_layers,
mlp_hidden_dim=mlp_hidden_dim,
boundary_dim=boundary_dim,
trans_layer=trans_layer,
activation=activation
) for _ in range(nmessage_passing_steps)])
self.gnn_stacks_inbd = nn.ModuleList([
InteractionNetwork(
nnode_in=nnode_in,
nnode_out=nnode_out,
nedge_in=nedge_in,
nedge_out=nedge_out,
nmlp_layers=nmlp_layers,
mlp_hidden_dim=mlp_hidden_dim,
boundary_dim=boundary_dim,
trans_layer=trans_layer,
activation=activation,
) for _ in range(nmessage_passing_steps)])
def forward(self,
x: torch.tensor,
edge_index: torch.tensor,
edge_features: torch.tensor,
boundary:torch.tensor,
x_inbd: torch.tensor,
edge_inbd_index: torch.tensor,
edge_inbd_features: torch.tensor,
boundary_inbd:torch.tensor):
for gnn in self.gnn_stacks:
x, edge_features= gnn(x, edge_index, edge_features,boundary )
for gnn in self.gnn_stacks_inbd:
x_inbd, edge_inbd_features = gnn(x_inbd, edge_inbd_index, edge_inbd_features,boundary_inbd)
return x, edge_features, x_inbd, edge_inbd_features
class Decoder(nn.Module):
def __init__(
self,
nnode_in: int,
nnode_out: int,
nmlp_layers: int,
mlp_hidden_dim: int,
activation:nn.Module):
super(Decoder, self).__init__()
self.node_fn = build_mlp(
nnode_in, [mlp_hidden_dim for _ in range(nmlp_layers)], nnode_out,activation=activation)
self.node_fn_inbd = build_mlp(
nnode_in, [mlp_hidden_dim for _ in range(nmlp_layers)], nnode_out,activation=activation)
def forward(self,
x: torch.tensor,
x_inbd: torch.tensor):
u1=self.node_fn(x)
u2=self.node_fn_inbd(x_inbd)
u=u1+u2
return u
class HeteroGNS(nn.Module):
def __init__(
self,
nnode_in_features: int,
nnode_out_features: int,
nedge_in_features: int,
latent_dim: int = 128,
nmessage_passing_steps: int = 10,
nmlp_layers: int = 2,
mlp_hidden_dim: int = 128,
activation: nn.Module = nn.ELU,
boundary_dim: int=128,
trans_layer: int =3,
):
super(HeteroGNS, self).__init__()
self._encoder = Encoder(
nnode_in_features=nnode_in_features,
nnode_out_features=latent_dim,
nedge_in_features=nedge_in_features,
nedge_out_features=latent_dim,
nmlp_layers=nmlp_layers,
mlp_hidden_dim=mlp_hidden_dim,
activation=activation,
)
self._processor = Processor(
nnode_in=latent_dim,
nnode_out=latent_dim,
nedge_in=latent_dim,
nedge_out=latent_dim,
nmessage_passing_steps=nmessage_passing_steps,
nmlp_layers=nmlp_layers,
mlp_hidden_dim=mlp_hidden_dim,
boundary_dim = boundary_dim,
trans_layer = trans_layer,
activation=activation,
)
self._decoder = Decoder(
nnode_in=latent_dim,
nnode_out=nnode_out_features,
nmlp_layers=nmlp_layers,
mlp_hidden_dim=mlp_hidden_dim,
activation=activation,
)
def forward(self,data):
x, edge_index, edge_features,boundary = data['G1'].x, data['G1'].edge_index, data['G1'].edge_features,data['G1'].boundary
x_inbd, edge_inbd_index, edge_inbd_features,boundary_inbd = data['G2'].x, data['G2'].edge_index,data['G2'].edge_features,data['G2'].boundary
x, edge_features,x_inbd,edge_inbd_features = self._encoder(x, edge_features,x_inbd,edge_inbd_features)
x, edge_features, x_inbd, edge_inbd_features = self._processor(x, edge_index, edge_features, boundary,x_inbd,edge_inbd_index, edge_inbd_features,boundary_inbd)
u = self._decoder(x,x_inbd)
return u