Skip to content

Latest commit

 

History

History
55 lines (42 loc) · 1.97 KB

README.md

File metadata and controls

55 lines (42 loc) · 1.97 KB

yolov4

The Pytorch implementation is from ultralytics/yolov3 archive branch. It can load yolov4.cfg and yolov4.weights(from AlexeyAB/darknet).

Config

  • Input shape INPUT_H, INPUT_W defined in yololayer.h
  • Number of classes CLASS_NUM defined in yololayer.h
  • FP16/FP32 can be selected by the macro USE_FP16 in yolov4.cpp
  • GPU id can be selected by the macro DEVICE in yolov4.cpp
  • NMS thresh NMS_THRESH in yolov4.cpp
  • bbox confidence threshold BBOX_CONF_THRESH in yolov4.cpp
  • BATCH_SIZE in yolov4.cpp

How to run

  1. generate yolov4.wts from pytorch implementation with yolov4.cfg and yolov4.weights, or download .wts from model zoo
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone -b archive https://github.com/ultralytics/yolov3.git
// download yolov4.weights from https://github.com/AlexeyAB/darknet#pre-trained-models
cp {tensorrtx}/yolov4/gen_wts.py {ultralytics/yolov3/}
cd {ultralytics/yolov3/}
python gen_wts.py yolov4.weights
// a file 'yolov4.wts' will be generated.
// the master branch of yolov3 should work, if not, you can checkout be87b41aa2fe59be8e62f4b488052b24ad0bd450
  1. put yolov4.wts into {tensorrtx}/yolov4, build and run
mv yolov4.wts {tensorrtx}/yolov4/
cd {tensorrtx}/yolov4
mkdir build
cd build
cmake ..
make
sudo ./yolov4 -s                          // serialize model to plan file i.e. 'yolov4.engine'
sudo ./yolov4 -d ../../yolov3-spp/samples // deserialize plan file and run inference, the images in samples will be processed.
  1. check the images generated, as follows. _zidane.jpg and _bus.jpg

More Information

See the readme in home page.