-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathYTYAttention.py
336 lines (284 loc) · 12.1 KB
/
YTYAttention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
import torch
from torch import nn
from torch.nn import init
import math
import math
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
return self.act(self.conv(x))
class CrossConv(nn.Module):
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_) # , (1, k), (1, s))
self.cv2 = Conv(c_, c2) # , (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class ppattention(nn.Module):
def __init__(self, in_planes, ratio=16):
super().__init__()
self.conv = CrossConv(2 * in_planes, in_planes)
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 输出最后两维1*1
self.max_pool = nn.AdaptiveMaxPool2d(1)
# b,h,w,c --- n*c #n,,c,h,w ---- n*c
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.SiLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
self.bnnorm = nn.BatchNorm2d(in_planes)
def forward(self, x):
x = self.conv(x) # 2-->1,CROSS CONV
res = x
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
attn = self.sigmoid(out)
result = x * attn + res
return result
class ppattention_wan(nn.Module):
def __init__(self, in_planes, ratio=16):
super().__init__()
self.conv = CrossConv(2 * in_planes, in_planes)
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 输出最后两维1*1
self.max_pool = nn.AdaptiveMaxPool2d(1)
# b,h,w,c --- n*c #n,,c,h,w ---- n*c
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.SiLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
self.fc2 = nn.Conv2d(1, 1, 1, bias=False)
self.sigmoid = nn.Sigmoid()
self.bnnorm = nn.BatchNorm2d(in_planes)
def forward(self, x):
x = self.conv(x) # 2-->1,CROSS CONV
res = x
avg_out = self.fc(self.avg_pool(x))
# max_out = self.fc(self.max_pool(x))
# out = avg_out + max_out
attn = self.sigmoid(avg_out)
x_channel_summation = torch.sum(x, dim=1, keepdim=True)
attn_channel_summation = self.sigmoid(self.fc2(x_channel_summation))
result = x * attn + res + attn_channel_summation * res
return result
class DFE(nn.Module):
def __init__(self, in_planes):
super().__init__()
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // 2, 1, bias=False),
nn.BatchNorm2d(in_planes // 2),
nn.SiLU())
def forward(self, x):
result = self.fc(x)
return result
class YTYAttention(nn.Module):
def __init__(self, channel=512, reduction=16, im_channel=49):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.SiLU(),
nn.Linear(channel // reduction, channel, bias=False),
)
self.sigmoid = nn.Sigmoid()
self.fc1 = nn.Linear(im_channel, 1, bias=False)
self.fc2 = nn.Linear(im_channel, 1, bias=False)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, im1, im2):
# b, c, _, _ = x.size()
img = torch.cat([im1, im2], dim=2)
origin = img
im1 = im1.transpose(1, 2)
im2 = im2.transpose(1, 2)
im1 = self.fc1(im1) # 1,512,1
im2 = self.fc2(im2) # 1,512,1
im = torch.cat([im1, im2], dim=2) # 1,512,2
im = torch.transpose(im, 1, 2) # 1,2,512
im = self.fc(im) # 1,2,512
im1 = im[:, 0, :].unsqueeze(1)
im2 = im[:, 1, :].unsqueeze(1)
im = torch.cat([im1, im2], dim=2)
im = im.transpose(1, 2)
im = self.sigmoid(im)
img = img.transpose(1, 2)
res = img * im.expand_as(img)
res = res.transpose(1, 2)
return res
class TYAttention(nn.Module):
def __init__(self, in_channel=1024, im_channel=49, gamma=2, b=1):
super().__init__()
self.fc1 = nn.Linear(im_channel, 1, bias=False)
self.fc2 = nn.Linear(im_channel, 1, bias=False)
self.SiLU = nn.SiLU()
self.bn = nn.BatchNorm1d(2)
self.gamma = gamma
self.b = b
self.sigmoid = nn.Sigmoid()
self.in_channel = in_channel
t = int(abs((math.log(self.in_channel, 2) + self.b) / self.gamma))
k = t if t % 2 else t + 1
self.conv = nn.Conv1d(2, 2, kernel_size=k, padding=int(k / 2), bias=False)
self.conv2 = nn.Conv1d(2, 2, kernel_size=k, padding=int(k / 2), bias=False)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, im1, im2):
img = torch.cat([im1, im1], dim=2) # B,49,2048
img = img.transpose(1, 2)
origin = img
im1 = im1.transpose(-1, -2) # B,1024,49
im2 = im2.transpose(-1, -2)
im1 = self.fc1(im1) # B,1024,1
im2 = self.fc2(im2)
im = torch.cat([im1, im2], dim=2) # B,1024,2
im = self.conv(im.transpose(-1, -2)) # B,2,1024
im = self.SiLU(im)
# im = self.bn(im)
im = self.conv2(im)
im1 = im[:, 0, :].unsqueeze(1)
im2 = im[:, 1, :].unsqueeze(1)
im = torch.cat([im1, im2], dim=2) # B,1,2048
im = im.transpose(1, 2)
im = self.sigmoid(im)
res = img * im.expand_as(img) + origin
return res.transpose(1, 2)
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.conv = nn.Conv2d(3 * in_planes, in_planes, 1, 1, 0)
self.bn = nn.BatchNorm2d(in_planes)
self.SiLU = nn.SiLU()
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 输出最后两维1*1
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.SiLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
self.bnnorm = nn.BatchNorm2d(in_planes)
def forward(self, x):
x = self.conv(x) # 2-1
x = self.bn(x)
x = self.SiLU(x)
res = x
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
attn = self.sigmoid(out)
out = x * attn + res
return out
class ChannelAttention_1(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention_1, self).__init__()
self.conv = nn.Conv2d(2 * in_planes, in_planes, 3, 1, 1)
self.bn = nn.BatchNorm2d(in_planes)
self.SiLU = nn.SiLU()
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 输出最后两维1*1
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes // 16, 1, bias=False),
nn.SiLU(),
nn.Conv2d(in_planes // 16, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.SiLU(x)
res = x
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
result = x * self.sigmoid(out) + res
return result
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, in_planes):
super(CBAM, self).__init__()
self.channelattention = ChannelAttention_1(in_planes)
self.spatialattention = SpatialAttention()
def transpose(self, x):
B, HW, C = x.size()
H = int(math.sqrt(HW))
x = x.transpose(1, 2)
x = x.view(B, C, H, H)
return x
def transpose_verse(self, x):
B, C, H, W = x.size()
HW = H * W
x = x.view(B, C, HW)
x = x.transpose(1, 2)
return x
def forward(self, x1, x2):
x1 = self.transpose(x1)
x2 = self.transpose(x2)
x = torch.cat([x1, x2], dim=1)
channel_attn = self.channelattention(x)
x1 = x1 * channel_attn
x2 = x2 * channel_attn
x1 = self.transpose_verse(x1)
x2 = self.transpose_verse(x2)
return x1, x2
class MixConv2d(nn.Module):
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
def __init__(self, c1, c2, k=(1, 3, 5, 7), s=1, equal_ch=True):
super().__init__()
groups = len(k)
if equal_ch: # equal c_ per group
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
else: # equal weight.numel() per group
b = [c2] + [0] * groups
a = np.eye(groups + 1, groups, k=-1)
a -= np.roll(a, 1, axis=1)
a *= np.array(k) ** 2
a[0] = 1
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU()
def forward(self, x):
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))