forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
upload_scribe_v2.py
225 lines (206 loc) · 8.84 KB
/
upload_scribe_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""Scribe Uploader for Pytorch Benchmark V2 Data
Currently supports data in pytest-benchmark format but can be extended.
New fields can be added just by modifying the schema in this file, schema
checking is only here to encourage reusing existing fields and avoiding typos.
"""
import argparse
import time
import multiprocessing
import json
import os
import requests
import subprocess
from collections import defaultdict
TORCHBENCH_V2_SCORE_SCHEMA = [
'total',
'delta',
'cuda-train-overall',
'cuda-train-nlp',
'cuda-train-classification',
'cuda-train-segmentation',
'cuda-train-speech',
'cuda-train-recommendation',
'cuda-eval-overall',
'cuda-eval-nlp',
'cuda-eval-classification',
'cuda-eval-segmentation',
'cuda-eval-speech',
'cuda-eval-recommendation',
'cpu-train-overall',
'cpu-train-nlp',
'cpu-train-classification',
'cpu-train-segmentation',
'cpu-train-speech',
'cpu-train-recommendation',
'cpu-eval-overall',
'cpu-eval-nlp',
'cpu-eval-classification',
'cpu-eval-segmentation',
'cpu-eval-speech',
'cpu-eval-recommendation',
]
def decorate_torchbench_score_schema(schema):
return f"torchbench_score_{schema}"
class ScribeUploader:
def __init__(self, category):
self.category = category
def format_message(self, field_dict):
assert 'time' in field_dict, "Missing required Scribe field 'time'"
message = defaultdict(dict)
for field, value in field_dict.items():
if field in self.schema['normal']:
message['normal'][field] = str(value)
elif field in self.schema['int']:
message['int'][field] = int(value)
elif field in self.schema['float']:
message['float'][field] = float(value)
else:
raise ValueError("Field {} is not currently used, "
"be intentional about adding new fields".format(field))
return message
def _upload_intern(self, messages: list):
for m in messages:
json_str = json.dumps(m)
cmd = ['scribe_cat', self.category, json_str]
subprocess.run(cmd)
def upload(self, messages: list):
if os.environ.get('SCRIBE_INTERN'):
return self._upload_intern(messages)
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
if not access_token:
raise ValueError("Can't find access token from environment variable")
url = "https://graph.facebook.com/scribe_logs"
r = requests.post(
url,
data={
"access_token": access_token,
"logs": json.dumps(
[
{
"category": self.category,
"message": json.dumps(message),
"line_escape": False,
}
for message in messages
]
),
},
)
print(r.text)
r.raise_for_status()
class PytorchBenchmarkUploader(ScribeUploader):
def __init__(self):
super().__init__('perfpipe_pytorch_benchmarks')
self.schema = {
'int': [
'time', 'rounds',
],
'normal': [
'benchmark_group', 'benchmark_name',
'benchmark_class', 'benchmark_time',
'git_repo', 'git_commit_id', 'git_branch',
'git_commit_time', 'git_dirty',
'pytorch_version', 'python_version',
'torchtext_version', 'torchvision_version',
'machine_kernel', 'machine_processor', 'machine_hostname',
'github_run_id', 'torchbench_score_version',
],
'float': [
'stddev', 'min', 'median', 'max', 'mean', 'runtime',
]
}
# Append the TorchBench score schema
self.schema['float'].extend(list(map(decorate_torchbench_score_schema, TORCHBENCH_V2_SCORE_SCHEMA)))
def post_pytest_benchmarks(self, pytest_json, max_data_upload=100):
machine_info = pytest_json['machine_info']
commit_info = pytest_json['commit_info']
upload_time = int(time.time())
messages = []
for b in pytest_json['benchmarks']:
base_msg = {
"time": upload_time,
"benchmark_group": b['group'],
"benchmark_name": b['name'],
"benchmark_class": b['fullname'],
"benchmark_time": pytest_json['datetime'],
"git_repo": commit_info['project'],
"git_commit_id": commit_info['id'],
"git_branch": commit_info['branch'],
"git_commit_time": commit_info['time'],
"git_dirty": commit_info['dirty'],
"pytorch_version": machine_info.get('pytorch_version', None),
"torchtext_version": machine_info.get('torchtext_version', None),
"torchvision_version": machine_info.get('torchvision_version', None),
"python_version": machine_info['python_implementation_version'],
"machine_kernel": machine_info['release'],
"machine_processor": machine_info['processor'],
"machine_hostname": machine_info['node'],
"github_run_id": machine_info.get('github_run_id', None),
"torchbench_score_version": machine_info.get('torchbench_score_version', None),
}
stats_msg = {"stddev": b['stats']['stddev'],
"rounds": b['stats']['rounds'],
"min": b['stats']['min'],
"median": b['stats']['median'],
"max": b['stats']['max'],
"mean": b['stats']['mean'],
}
stats_msg.update(base_msg)
messages.append(self.format_message(stats_msg))
if 'data' in b['stats']:
for runtime in b['stats']['data'][:max_data_upload]:
runtime_msg = {"runtime": runtime}
runtime_msg.update(base_msg)
messages.append(self.format_message(runtime_msg))
self.upload(messages)
def post_torchbench_score(self, pytest_json, score):
machine_info = pytest_json['machine_info']
commit_info = pytest_json['commit_info']
upload_time = int(time.time())
scribe_message = {
"time": upload_time,
"benchmark_time": pytest_json['datetime'],
"git_repo": commit_info['project'],
"git_commit_id": commit_info['id'],
"git_branch": commit_info['branch'],
"git_commit_time": commit_info['time'],
"git_dirty": commit_info['dirty'],
"pytorch_version": machine_info.get('pytorch_version', None),
"torchtext_version": machine_info.get('torchtext_version', None),
"torchvision_version": machine_info.get('torchvision_version', None),
"python_version": machine_info['python_implementation_version'],
"machine_kernel": machine_info['release'],
"machine_processor": machine_info['processor'],
"machine_hostname": machine_info['node'],
"github_run_id": machine_info.get('github_run_id', None),
"torchbench_score_version": machine_info.get('torchbench_score_version', None),
}
for s in TORCHBENCH_V2_SCORE_SCHEMA:
decorated_schema = decorate_torchbench_score_schema(s)
if s == "total" or s == "delta":
scribe_message[decorated_schema] = score["score"][s]
else:
scribe_message[decorated_schema] = score["score"]["domain"][s]
m = self.format_message(scribe_message)
self.upload([m])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--pytest_bench_json", required=True,
type=argparse.FileType('r'),
help='Upload json data formatted by pytest-benchmark module')
parser.add_argument("--torchbench_score_file", required=True,
type=argparse.FileType('r'),
help="torchbench score file to include")
args = parser.parse_args()
# Result sanity check
json_name = os.path.basename(args.pytest_bench_json.name)
json_score = json.load(args.torchbench_score_file)
score_data = None
for data in json_score:
if os.path.basename(data["file"]) == json_name:
score_data = data
assert score_data, f"Can't find {json_name} score in {args.torchbench_score_file}. Stop."
benchmark_uploader = PytorchBenchmarkUploader()
json_data = json.load(args.pytest_bench_json)
benchmark_uploader.post_pytest_benchmarks(json_data)
benchmark_uploader.post_torchbench_score(json_data, score_data)