-
Notifications
You must be signed in to change notification settings - Fork 0
/
gene_poetry_head.py
184 lines (163 loc) · 7.36 KB
/
gene_poetry_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#-*- coding: UTF-8 -*-
import os
import collections
import numpy as np
import tensorflow as tf
'''
test_acrostic_poetry.py 生成藏头诗(五言或七言) win10 python3.6.1 tensorflow1.2.1
'''
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
#-------------------------------数据预处理---------------------------#
poetry_file ='poetry.txt'
# 诗集
poetrys = []
with open(poetry_file, "r", encoding='utf-8') as f:
for line in f:
try:
#line = line.decode('UTF-8')
line = line.strip(u'\n')
title, content = line.strip(u' ').split(u':')
content = content.replace(u' ',u'')
if u'_' in content or u'(' in content or u'(' in content or u'《' in content or u'[' in content:
continue
if len(content) < 5 or len(content) > 79:
continue
content = u'[' + content + u']'
poetrys.append(content)
except Exception as e:
pass
# 按诗的字数排序
poetrys = sorted(poetrys,key=lambda line: len(line))
print('唐诗总数: ', len(poetrys))
# 统计每个字出现次数
all_words = []
for poetry in poetrys:
all_words += [word for word in poetry]
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)
# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_num_map = dict(zip(words, range(len(words))))
# 把诗转换为向量形式,参考TensorFlow练习1
to_num = lambda word: word_num_map.get(word, len(words))
poetrys_vector = [ list(map(to_num, poetry)) for poetry in poetrys]
#[[314, 3199, 367, 1556, 26, 179, 680, 0, 3199, 41, 506, 40, 151, 4, 98, 1],
#[339, 3, 133, 31, 302, 653, 512, 0, 37, 148, 294, 25, 54, 833, 3, 1, 965, 1315, 377, 1700, 562, 21, 37, 0, 2, 1253, 21, 36, 264, 877, 809, 1]
#....]
# 每次取64首诗进行训练
batch_size = 1
n_chunk = len(poetrys_vector) // batch_size
class DataSet(object):
def __init__(self, data_size):
self._data_size = data_size
self._epochs_completed = 0
self._index_in_epoch = 0
self._data_index = np.arange(data_size)
def next_batch(self,batch_size):
start = self._index_in_epoch
if start + batch_size > self._data_size:
np.random.shuffle(self._data_index)
self._epochs_completed = self._epochs_completed + 1
self._index_in_epoch = batch_size
full_batch_features ,full_batch_labels = self.data_batch(0, batch_size)
return full_batch_features , full_batch_labels
else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
full_batch_features ,full_batch_labels = self.data_batch(start, end)
if self._index_in_epoch == self._data_size:
self._index_in_epoch = 0
self._epochs_completed = self._epochs_completed + 1
np.random.shuffle(self._data_index)
return full_batch_features,full_batch_labels
def data_batch(self, start, end):
batches = []
for i in range(start, end):
batches.append(poetrys_vector[self._data_index[i]])
length = max(map(len, batches))
xdata = np.full((end - start,length), word_num_map[' '], np.int32)
for row in range(end - start):
xdata[row,:len(batches[row])] = batches[row]
ydata = np.copy(xdata)
ydata[:, :-1] = xdata[:, 1:]
return xdata, ydata
#---------------------------------------RNN--------------------------------------#
input_data = tf.placeholder(tf.int32, [batch_size, None])
output_targets = tf.placeholder(tf.int32, [batch_size, None])
# 定义RNN
def neural_network(model = 'lstm', rnn_size = 128, num_layers = 2):
if model == 'rnn':
cell_fun = tf.contrib.rnn.BasicRNNCell
elif model == 'gru':
cell_fun = tf.contrib.rnn.GRUCell
elif model == 'lstm':
cell_fun = tf.contrib.rnn.BasicLSTMCell
cell = cell_fun(rnn_size, state_is_tuple = True)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers, state_is_tuple = True)
initial_state = cell.zero_state(batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)])
softmax_b = tf.get_variable("softmax_b", [len(words)])
embedding = tf.get_variable("embedding", [len(words), rnn_size])
inputs = tf.nn.embedding_lookup(embedding, input_data)
outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope = 'rnnlm')
output = tf.reshape(outputs,[-1, rnn_size])
logits = tf.matmul(output, softmax_w) + softmax_b
probs = tf.nn.softmax(logits)
return logits, last_state, probs, cell, initial_state
#-------------------------------生成古诗---------------------------------#
# 使用训练完成的模型
def gen_head_poetry(heads, type):
if type != 5 and type != 7:
print('The second para has to be 5 or 7!')
return
def to_word(weights):
t = np.cumsum(weights)
s = np.sum(weights)
sample = int(np.searchsorted(t, np.random.rand(1)*s))
return words[sample]
_, last_state, probs, cell, initial_state = neural_network()
Session_config = tf.ConfigProto(allow_soft_placement = True)
Session_config.gpu_options.allow_growth = True
with tf.Session(config = Session_config) as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
#saver.restore(sess, 'model/poetry.module-99')
ckpt = tf.train.get_checkpoint_state('./model/')
checkpoint_suffix = ""
if tf.__version__ > "0.12":
checkpoint_suffix = ".index"
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path + checkpoint_suffix):
#print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
return None
poem = ''
for head in heads:
flag = True
while flag:
state_ = sess.run(cell.zero_state(1, tf.float32))
x = np.array([list(map(word_num_map.get, u'['))])
[probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
sentence = head
x = np.zeros((1, 1))
x[0,0] = word_num_map[sentence]
[probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
word = to_word(probs_)
sentence += word
while word != u'。':
x = np.zeros((1, 1))
x[0,0] = word_num_map[word]
[probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
word = to_word(probs_)
sentence += word
if len(sentence) == 2 + 2 * type:
sentence += u'\n'
poem += sentence
flag = False
return poem
print(gen_head_poetry(u'王佳晟牛逼', 5))