forked from cleinc/bts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbts_dataloader.py
215 lines (169 loc) · 8.74 KB
/
bts_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (C) 2019 Jin Han Lee
#
# This file is a part of BTS.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
from __future__ import absolute_import, division, print_function
import tensorflow as tf
from tensorflow.python.ops import array_ops
class BtsDataloader(object):
"""bts dataloader"""
def __init__(self, data_path, gt_path, filenames_file, params, mode,
do_rotate=False, degree=5.0, do_kb_crop=False):
self.data_path = data_path
self.gt_path = gt_path
self.params = params
self.mode = mode
self.do_rotate = do_rotate
self.degree = degree
self.do_kb_crop = do_kb_crop
with open(filenames_file, 'r') as f:
filenames = f.readlines()
if mode == 'train':
assert not self.params.batch_size % self.params.num_gpus
mini_batch_size = int(self.params.batch_size / self.params.num_gpus)
self.loader = tf.data.Dataset.from_tensor_slices(filenames)
self.loader = self.loader.apply(tf.contrib.data.shuffle_and_repeat(len(filenames)))
self.loader = self.loader.map(self.parse_function_train, num_parallel_calls=params.num_threads)
self.loader = self.loader.map(self.train_preprocess, num_parallel_calls=params.num_threads)
self.loader = self.loader.batch(mini_batch_size)
self.loader = self.loader.prefetch(mini_batch_size)
else:
self.loader = tf.data.Dataset.from_tensor_slices(filenames)
self.loader = self.loader.map(self.parse_function_test, num_parallel_calls=1)
self.loader = self.loader.map(self.test_preprocess, num_parallel_calls=1)
self.loader = self.loader.batch(1)
self.loader = self.loader.prefetch(1)
def parse_function_test(self, line):
split_line = tf.string_split([line]).values
image_path = tf.string_join([self.data_path, split_line[0]])
if self.params.dataset == 'nyu':
image = tf.image.decode_jpeg(tf.read_file(image_path))
else:
image = tf.image.decode_png(tf.read_file(image_path))
width_o = tf.to_float(array_ops.shape(image)[1])
image = tf.image.convert_image_dtype(image, tf.float32)
focal = tf.string_to_number(split_line[2])
if self.do_kb_crop is True:
height = tf.shape(image)[0]
width = tf.shape(image)[1]
top_margin = tf.to_int32(height - 352)
left_margin = tf.to_int32((width - 1216) / 2)
image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
return image, focal
def test_preprocess(self, image, focal):
# To use with model pretrained on ImageNet
# Switch RGB to BGR order and scale to range [0,255]
image = image[:, :, ::-1] * 255.0
# Subtract ImageNet mean pixel values and scale
image.set_shape([None, None, 3])
image = self.mean_image_subtraction(image, [103.939, 116.779, 123.68]) * 0.017
return image, focal
def parse_function_train(self, line):
split_line = tf.string_split([line]).values
image_path = tf.string_join([self.data_path, split_line[0]])
depth_gt_path = tf.string_join([self.gt_path, tf.string_strip(split_line[1])])
if self.params.dataset == 'nyu':
image = tf.image.decode_jpeg(tf.read_file(image_path))
else:
image = tf.image.decode_png(tf.read_file(image_path))
depth_gt = tf.image.decode_png(tf.read_file(depth_gt_path), channels=0, dtype=tf.uint16)
if self.params.dataset == 'nyu':
depth_gt = tf.cast(depth_gt, tf.float32) / 1000.0
else:
depth_gt = tf.cast(depth_gt, tf.float32) / 256.0
image = tf.image.convert_image_dtype(image, tf.float32)
focal = tf.string_to_number(split_line[2])
# To avoid blank boundaries due to pixel registration
if self.params.dataset == 'nyu':
depth_gt = depth_gt[45:472, 43:608, :]
image = image[45:472, 43:608, :]
if self.do_kb_crop is True:
print('Cropping training images as kitti benchmark images')
height = tf.shape(image)[0]
width = tf.shape(image)[1]
top_margin = tf.to_int32(height - 352)
left_margin = tf.to_int32((width - 1216) / 2)
depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
if self.do_rotate is True:
random_angle = tf.random_uniform([], - self.degree * 3.141592 / 180, self.degree * 3.141592 / 180)
image = tf.contrib.image.rotate(image, random_angle, interpolation='BILINEAR')
depth_gt = tf.contrib.image.rotate(depth_gt, random_angle, interpolation='NEAREST')
print('Do random cropping from fixed size input')
image, depth_gt = self.random_crop_fixed_size(image, depth_gt)
return image, depth_gt, focal
def train_preprocess(self, image, depth_gt, focal):
# Random flipping
do_flip = tf.random_uniform([], 0, 1)
image = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(image), lambda: image)
depth_gt = tf.cond(do_flip > 0.5, lambda: tf.image.flip_left_right(depth_gt), lambda: depth_gt)
# Random gamma, brightness, color augmentation
do_augment = tf.random_uniform([], 0, 1)
image = tf.cond(do_augment > 0.5, lambda: self.augment_image(image), lambda: image)
# To use with model pretrained on ImageNet
# Switch RGB to BGR order and scale to range [0,255]
image = image[:, :, ::-1] * 255.0
image.set_shape([self.params.height, self.params.width, 3])
depth_gt.set_shape([self.params.height, self.params.width, 1])
# Subtract ImageNet mean pixel values and scale
image = self.mean_image_subtraction(image, [103.939, 116.779, 123.68]) * 0.017
return image, depth_gt, focal
@staticmethod
def mean_image_subtraction(image, means):
"""Subtracts the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image = mean_image_subtraction(image, means)
Note that the rank of `image` must be known.
Args:
image: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
if image.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
num_channels = image.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image)
for i in range(num_channels):
channels[i] -= means[i]
return tf.concat(axis=2, values=channels)
def random_crop_fixed_size(self, image, depth_gt):
image_depth = tf.concat([image, depth_gt], 2)
image_depth_cropped = tf.random_crop(image_depth, [self.params.height, self.params.width, 4])
image_cropped = image_depth_cropped[:, :, 0:3]
depth_gt_cropped = tf.expand_dims(image_depth_cropped[:, :, 3], 2)
return image_cropped, depth_gt_cropped
@staticmethod
def augment_image(image):
# gamma augmentation
gamma = tf.random_uniform([], 0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
brightness = tf.random_uniform([], 0.75, 1.25)
image_aug = image_aug * brightness
# color augmentation
colors = tf.random_uniform([3], 0.9, 1.1)
white = tf.ones([tf.shape(image)[0], tf.shape(image)[1]])
color_image = tf.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
# clip
image_aug = tf.clip_by_value(image_aug, 0, 1)
return image_aug