-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmfg_synthetic.py
925 lines (751 loc) · 35.8 KB
/
mfg_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
# This version is meant to test the correctness of RL versus MFG equations
# It uses reward function rather than cost function
# Reward function is different from the one in Gomes paper
import numpy as np
from numpy.linalg import norm
from scipy import special
from scipy.stats import entropy
import platform
if (platform.system() == "Windows"):
import pandas as pd
import matplotlib.pylab as plt
import var
import os
import itertools
import time
import warnings
warnings.filterwarnings('error')
class actor_critic:
def __init__(self, theta=10, shift=0, alpha_scale=100, d=21):
# initialize theta
self.theta = theta
self.shift = shift
self.alpha_scale = alpha_scale
# initialize weight vector (column) for value function approximation
self.w = self.init_w(d)
# number of topics
self.d = d
# d x d x dim_theta tensor, computed within sample_action and used for
# calculating gradient for theta update
# self.tensor_phi = np.zeros([self.d, self.d, self.dim_theta]) #here
# d x d matrix, computed within sample_action and used for sampling action P
# and also for calculating gradient for theta update
self.mat_alpha = np.zeros([self.d, self.d])
self.mat_alpha_deriv = np.zeros([self.d, self.d])
if (platform.system() == "Windows"):
self.var = var.var(d=d)
# ------------------- File processing functions ------------------ #
def reorder(self, list_rows):
"""
Given a list of rows (each is a pi^n), order all rows by decreasing popularity
based on the first row.
"""
row1 = list_rows[0]
# create mapping from index to value
list_pairs = []
for i in range(len(row1)):
list_pairs.append( (i, row1[i]) )
# sort by decreasing popularity
list_pairs.sort(reverse=True, key=lambda x: x[1])
# extract ordering
order = []
for pair in list_pairs:
order.append( pair[0] )
# apply ordering to all rows in list_rows
for i in range(len(list_rows)):
list_rows[i] = [ list_rows[i][j] for j in order ]
return list_rows
def reorder_files(self, indir='train', outdir='train_reordered'):
"""
Process all files in given directory, creates new files
"""
path_to_dir = os.getcwd() + '/' + indir
path_to_outdir = os.getcwd() + '/' + outdir
for filename in os.listdir(path_to_dir):
path_to_file = path_to_dir + '/' + filename
f = open(path_to_file, 'r')
f.readline() # skip the header line of topics
list_lines = f.readlines()
f.close()
# strip away newline, convert csv format to list of entries,
# remove the last empty entry (due to extra comma)
list_lines = list(map(lambda x: x.strip().split(',')[:-1], list_lines))
# convert to int
for i in range(len(list_lines)):
list_lines[i] = list(map(int, list_lines[i]))
# reorder
list_rows = self.reorder(list_lines)
# write to new file
index_dot = filename.index('.')
filename_new = filename[:index_dot] + '_reordered' + filename[index_dot:]
f = open(path_to_outdir + '/' + filename_new, 'w')
for row in list_rows:
s = ','.join(map(str, row))
s += '\n'
f.write(s)
f.close()
def normalize(self, indir='train_reordered', outdir='train_normalized'):
"""
Normalize all rows of data
"""
path_to_dir = os.getcwd() + '/' + indir
path_to_outdir = os.getcwd() + '/' + outdir
for filename in os.listdir(path_to_dir):
path_to_file = path_to_dir + '/' + filename
with open(path_to_file, 'r') as f:
matrix = np.loadtxt(f, delimiter=',')
num_rows = matrix.shape[0]
matrix = matrix / np.sum(matrix, axis=1).reshape(num_rows,1)
path_to_outfile = path_to_outdir + '/' + filename
with open(path_to_outfile, 'wb') as f:
np.savetxt(f, matrix, fmt='%.3e')
def get_max_nonzero(self, indir):
"""
Scan through the training files in indir and find the maximum
number of nonzero entries in the initial distribution
"""
max_nnz = 0
file_with_max = ''
path_to_dir = os.getcwd() + '/' + indir
for filename in os.listdir(path_to_dir):
path_to_file = path_to_dir + '/' + filename
with open(path_to_file, 'r') as f:
matrix = np.loadtxt(f, delimiter=',')
nnz = np.count_nonzero(matrix[0])
if ( nnz > max_nnz ):
max_nnz = nnz
file_with_max = filename
print("Max nnz:", max_nnz)
print("File with max nnz:", file_with_max)
# ------------------- End file processing functions ------------------ #
# ------------------- Actor-critic training functions ---------------- #
def init_w(self, d):
"""
Input:
d - number of topics
Feature vector is
[1, pi_1,...,pi_d, pi_1*pi_1,...,pi_1*pi_d, pi_2*pi_2,...,pi_2*pi_d, ...... , pi_d*pi_d]
Initialize weight vector for value function approximation
Need to decide whether to include the null topic
"""
num_features = int((d+1)*d / 2 + d + 1)
return np.random.rand(num_features, 1)
def init_pi0(self, path_to_dir, verbose=0):
"""
Generates the collection of initial population distributions.
This collection will be sampled to get the start state for each training episode
Assumes that each file in directory has rows of the format:
pi^0_1, ... , pi^0_d
where d is a fixed constant across all files
"""
list_pi0 = []
# for filename in os.listdir(path_to_dir):
num_files = len(os.listdir(path_to_dir))
for num_day in range(1, 1+num_files):
filename = "trend_distribution_day%d_reordered.csv" % num_day
path_to_file = path_to_dir + '/' + filename
f = open(path_to_file, 'r')
list_lines = f.readlines()
f.close()
# Need to decide whether or not to include the null topic at index 0
list_pi0.append( list(map(float, list_lines[0].strip().split(' ')))[0:self.d] )
if verbose:
print(filename)
num_rows = len(list_pi0)
num_cols = len(list_pi0[0])
self.mat_pi0 = np.zeros([num_rows, num_cols])
for i in range(len(list_pi0)):
# total = np.sum(list_pi0[i])
# self.mat_pi0[i] = list(map(lambda x: x/total, list_pi0[i]))
self.mat_pi0[i] = list_pi0[i]
def sample_action(self, pi):
"""
Samples from product of d d-dimensional Dirichlet distributions
Input:
pi - row vector
Returns an entire transition probability matrix
"""
# Construct all alphas
self.mat_alpha = np.zeros([self.d, self.d])
# Construct all derivatives
self.mat_alpha_deriv = np.zeros([self.d, self.d])
# Create tensor phi(i,j,pi) for storing all phi matrices for later use
# self.tensor_phi = np.zeros([self.d,self.d,self.dim_theta])
# temp_{ij} = pi_j - pi_i
# alpha^i_j = ln ( 1 + exp[ theta ( (pi_j - pi_i) - shift ) ] )
mat1 = np.repeat(pi.reshape(1, self.d), self.d, 0)
mat2 = np.repeat(pi.reshape(self.d, 1), self.d, 1)
temp = mat1 - mat2
self.mat_alpha = np.log( 1 + np.exp( self.theta * (temp - self.shift)))
# Also create matrix of derivatives
# d(alpha^i_j)/d(theta) = \frac{ pi_j - pi_i - shift } { 1 + exp( -theta*(pi_j - pi_i - shift) ) }
numerator = temp - self.shift
denominator = 1 + np.exp( (-self.theta) * numerator)
self.mat_alpha_deriv = numerator / denominator
# Sample matrix P from Dirichlet
P = np.zeros([self.d, self.d])
for i in range(self.d):
# Get y^i_1, ... y^i_d
# y = [np.random.gamma(shape=a, scale=1) for a in self.mat_alpha[i, :]]
# Using the vector as input to shape reduces runtime by 5s
y = np.random.gamma(shape=self.mat_alpha[i,:]*self.alpha_scale, scale=1)
# replace zeros with dummy value
y[y == 0] = 1e-20
total = np.sum(y)
# Store into i-th row of matrix P
# P[i] = [y_j/total for y_j in y]
try:
P[i] = y / total
except Warning:
P[i] = y / total
print(y, total)
return P
def calc_reward(self, P, pi, d):
"""
Input:
P - transition matrix
pi - population distribution as row vector
d - should be self.d always, except during testing
Using r_i(pi, P_i) = - 1/2 ||P_i||^2, reward is
R = - \sum_i pi_i 1/2 ||P_i||^2
= - 1/2< pi , v >
where v is vector whose i-th element is ||P_i||^2
"""
# v = np.power( norm(P, axis=1), 2 )
v = np.apply_along_axis(lambda row: np.power(norm(row, ord=2),2), 1, P)
reward = -0.5* pi.dot(v)
return reward
def calc_value(self, pi):
"""
Input:
pi - population distribution as a row vector
Returns V(pi; w) = varphi(pi) dot self.w
where varphi(pi) is the feature vector constructed using pi
"""
# generate pairs of (pi_i, pi_j) for all i, for all j >= i
list_tuples = list(itertools.combinations_with_replacement(pi, 2))
# calculate products
list_features = []
for idx in range(len(list_tuples)):
pair = list_tuples[idx]
list_features.append(pair[0] * pair[1])
# append first-order feature
list_features = list_features + list(pi)
# append bias
list_features.append(1)
# calculate value by inner product
value = np.array(list_features).dot(self.w)
# This pure numpy version is actually much slower
# array_tuples = np.vstack(itertools.combinations_with_replacement(pi, 2))
# # calculate products, axis is vertical
# array_features = np.apply_along_axis(lambda x: x[0]*x[1], axis=1, arr=array_tuples)
# # append first-order features along with bias
# array_features = np.concatenate([array_features, pi, [1]], axis=0)
# # calculate value by inner product
# value = array_features.dot(self.w)
return value
def calc_features(self, pi):
"""
Input:
pi - population distribution as a row vector
Returns varphi(pi) as a row vector
"""
# generate pairs of (pi_i, pi_j) for all i, for all j >= i
list_tuples = list(itertools.combinations_with_replacement(pi, 2))
# calculate products
list_features = []
for idx in range(len(list_tuples)):
pair = list_tuples[idx]
list_features.append(pair[0] * pair[1])
# append first-order feature
list_features = list_features + list(pi)
# append bias
list_features.append(1)
return np.array(list_features)
def calc_gradient_vectorized(self, P, pi):
"""
Input:
P - transition probability matrix
pi - population distribution as a row vector
Calculates \nabla_{theta} log (F(P, pi, theta))
where F is the product of d d-dimensional Dirichlet distributions
tensor_phi and mat_alpha are global variables computed in sample_action()
This version is ~3 times faster than the non-vectorized version
"""
# Create B matrix, whose (i,j) element is
# B_{ij} = ( -psi(alpha^i_j) + psi(\sum_j alpha^i_j) + log(P_{ij}))
# * 2 * <phi(i,j,pi) , theta>
# (i,j) element of mat1 is psi(alpha^i_j)
mat1 = special.digamma(self.mat_alpha)
# Each row of mat2 has same value along the row
# each element in row i is psi(\sum_j alpha^i_j)
mat2 = special.digamma( np.ones([self.d, self.d]) * np.sum(self.mat_alpha, axis=1).reshape(self.d, 1) )
# (i,j) element of mat3 is ln(P_{ij})
P[P==0] = 1e-100
try:
mat3 = np.log(P)
except Warning:
print(P)
print(np.where( P==0 )[0])
mat3 = np.log(P)
# Expression is
# nabla_theta log(F) = \sum_i \sum_j (-psi(alpha^i_j) + psi(\sum_j alpha^i_j) + ln(P_{ij})) d(alpha^i_j)/d(theta)
gradient = np.sum( (-mat1 + mat2 + mat3) * self.mat_alpha_deriv )
return gradient
def calc_gradient_basic(self, P, pi):
"""
Do not use this version
"""
gradient = 0
for i in range(self.d):
for j in range(self.d):
gradient = gradient - special.digamma(self.mat_alpha[i,j]) * self.mat_alpha_deriv[i,j]
multiplier = special.digamma( np.sum(self.mat_alpha[i]) )
for j in range(self.d):
gradient = gradient + multiplier * self.mat_alpha_deriv[i,j]
for j in range(self.d):
gradient = gradient + np.log(P[i,j]) * self.mat_alpha_deriv[i,j]
return gradient
def calc_gradient(self, P, pi):
"""
Input:
P - transition probability matrix
pi - population distribution as a row vector
Calculates \nabla_{theta} log (F(P, pi, theta))
where F is the product of d d-dimensional Dirichlet distributions
tensor_phi and mat_alpha are global variables computed in sample_action()
Do not use this version. Use calc_gradient_vectorized()
"""
# initialize gradient as column vector
gradient = 0
for i in range(self.d):
# psi(\sum_j alpha^i_j)
multiplier = special.digamma( np.sum(self.mat_alpha[i]) )
for j in range(self.d):
# first term = - \nabla log(\Gamma(\alpha^i_j))
# = - psi(alpha^i_j) * 2 * (phi(i,j,pi) dot theta) phi(i,j,pi)
first_term = - special.digamma(self.mat_alpha[i,j])
# second term = psi(\sum_j alpha^i_j) * \nabla \alpha^i_j
# = psi(\sum_j \alpha^i_j) * 2 * (phi(i,j,pi) dot theta) phi(i,j,pi)
second_term = multiplier
# third term = \nabla (\alpha^i_j - 1) log(P_{ij})
# = 2 * (phi(i,j,pi) dot theta) phi(i,j,pi) * log(P_{ij})
third_term = np.log( P[i,j] )
gradient = gradient + (first_term + second_term + third_term)*self.mat_alpha_deriv[i,j]
return gradient
def train_log(self, vector, filename, str_format):
f = open(filename, 'a')
vector.tofile(f, sep=',', format=str_format)
f.write("\n")
f.close()
def train(self, num_episodes=4000, gamma=1, constant=0, lr_critic=0.1, lr_actor=0.001, consecutive=100, file_theta='results_syn/theta.csv', file_pi='results_syn/pi.csv', file_reward='results_syn/reward.csv', file_w='results_syn/w.csv', write_file=0, write_all=0):
"""
Input:
1. num_episodes - each episode is 16 steps (9am to 12midnight)
2. gamma - temporal discount
3. lr_critic - learning rate for value function parameter update
4. lr_actor - learning rate for policy parameter update
5. consecutive - number of consecutive episodes for each reporting of average reward
Main actor-critic training procedure that improves theta and w
"""
# initialize collection of start states
self.init_pi0(path_to_dir=os.getcwd()+'/train_normalized')
self.num_start_samples = self.mat_pi0.shape[0] # number of rows
list_reward = []
for episode in range(num_episodes):
# print("Episode", episode)
if write_all:
with open('temp.csv', 'a') as f:
f.write('Episode %d \n\n' % episode)
# Sample starting pi^0 from mat_pi0
idx_row = np.random.randint(self.num_start_samples)
# idx_row = 0 # for testing purposes, select the first row of day 1 always
pi = self.mat_pi0[idx_row, :] # row vector
discount = 1
total_reward = 0
num_steps = 0
# Stop after finishing the iteration when num_steps=15, because
# at that point pi_next = the predicted distribution at midnight
while num_steps < 15:
num_steps += 1
# print("pi\n", pi)
# print(num_steps)
# print(self.theta)
# Sample action
P = self.sample_action(pi)
if write_all:
with open('temp.csv','ab') as f:
np.savetxt(f, np.array(['num_steps = %d' % num_steps]), fmt='%s')
np.savetxt(f, np.array(['distribution']), fmt='%s')
np.savetxt(f, pi.reshape(1, self.d), delimiter=',', fmt='%.6f')
np.savetxt(f, np.array(['Action']), fmt='%s')
np.savetxt(f, P, delimiter=',', fmt='%.3f')
# Take action, get pi^{n+1} = P^T pi
pi_next = np.transpose(P).dot(pi)
reward = self.calc_reward(P, pi, self.d)
# Calculate TD error
vec_features_next = self.calc_features(pi_next)
vec_features = self.calc_features(pi)
# Consider using the terminal condition V^N = 0
delta = reward + gamma*(vec_features_next.dot(self.w)) - (vec_features.dot(self.w))
# Update value function parameter
# w <- w + alpha * delta * varphi(pi)
# still a column vector
length = len(vec_features)
if constant == 1:
self.w = self.w + lr_critic * delta * vec_features.reshape(length,1)
else:
self.w = self.w + (lr_critic/(episode+1)) * delta * vec_features.reshape(length,1)
# theta update
gradient = self.calc_gradient_vectorized(P, pi)
if constant == 1:
# NOTE THE SIGN IS NOW POSITIVE (mfg_ac2 has negative)
self.theta = self.theta + lr_actor * delta * gradient
else:
# NOTE THE SIGN IS NOW POSITIVE (mfg_ac2 has negative)
self.theta = self.theta + (lr_actor/((episode+1)*np.log(np.log(episode+20)))) * delta * gradient
discount = discount * gamma
pi = pi_next
total_reward += reward
list_reward.append(total_reward)
if (episode % consecutive == 0):
print("Theta\n", self.theta)
print("pi\n", pi)
reward_avg = sum(list_reward)/consecutive
print("Average reward during previous %d episodes: " % consecutive, str(reward_avg))
list_reward = []
if write_file:
self.train_log(self.theta, file_theta, "%.5e")
self.train_log(pi, file_pi, "%.3e")
self.train_log(np.array([reward_avg]), file_reward, "%.3e")
self.train_log(self.w, file_w, "%.5e")
# ---------------- End training code ---------------- #
# ---------------- Evaluation code ------------------ #
def JSD(self, P, Q):
"""
Arguments:
P,Q - discrete probability distribution
Return:
Jensen-Shannon divergence
"""
# Replace all zeros by 1e-100
P[P<=0] = 1e-100
Q[Q<=0] = 1e-100
P_normed = P / norm(P, ord=1)
Q_normed = Q / norm(Q, ord=1)
M = 0.5 * (P + Q)
return 0.5 * (entropy(P,M) + entropy(Q,M))
def generate_trajectory(self, pi0, total_hours):
"""
Argument:
pi0 - initial population distribution (included in output)
total_hours - number of hours to generate (including first and last hour)
Return:
1. mat_trajectory, each row is the distribution at a discrete time step,
from pi^0 to pi^N
2. array_actions - each element is an entire transition matrix P
"""
pi = pi0
# Initialize matrix to store trajectory
# total_steps rows by d columns
mat_trajectory = np.zeros([total_hours, self.d])
# Store initial distribution
mat_trajectory[0] = pi
array_actions = np.zeros([total_hours-1, self.d, self.d])
hour = 1
while hour < total_hours:
P = self.sample_action(pi)
array_actions[hour-1] = P
pi_next = np.transpose(P).dot(pi)
mat_trajectory[hour] = pi_next
pi = pi_next
hour += 1
return mat_trajectory, array_actions
def evaluate(self, theta=7.401786, d=21, episode_length=16, indir='test_normalized', outfile='test_eval.csv'):
"""
Main evaluation function
Argument:
theta - value to use for the fixed policy
indir - directory containing the test dataset
"""
# Fix policy by setting parameter
self.theta = theta
self.d = d
path_to_dir = os.getcwd() + '/' + indir
num_test_trajectories = len(os.listdir(path_to_dir))
array_l1_final = np.zeros(num_test_trajectories)
array_l1_mean = np.zeros(num_test_trajectories)
array_JSD_final = np.zeros(num_test_trajectories)
array_JSD_mean = np.zeros(num_test_trajectories)
idx = 0
# For each file in test_normalized
for filename in os.listdir(path_to_dir):
path_to_file = path_to_dir + '/' + filename
with open(path_to_file, 'r') as f:
mat_empirical = np.loadtxt(f, delimiter=' ')
mat_empirical = mat_empirical[:, 0:self.d]
# Read initial distribution pi0
pi0 = mat_empirical[0]
# Generate entire trajectory using policy
mat_trajectory, array_actions = self.generate_trajectory(pi0, episode_length)
# L1 norm of difference between generated and empirical final distribution pi^N
l1_final = norm(mat_trajectory[-1] - mat_empirical[-1], ord=1)
array_l1_final[idx] = l1_final
# L1 norm of difference between generated distribution and empirical distribution, averaged across all time steps
diff = mat_empirical - mat_trajectory
l1_mean = np.mean(np.apply_along_axis(lambda row: norm(row, ord=1), 1, diff))
array_l1_mean[idx] = l1_mean
# JS divergence between final distributions
JSD_final = self.JSD(mat_trajectory[-1], mat_empirical[-1])
array_JSD_final[idx] = JSD_final
# Average JS divergence across all time steps
JSD_mean = 0
for idx2 in range(episode_length):
JSD_mean += self.JSD(mat_empirical[idx2], mat_trajectory[idx2])
JSD_mean = JSD_mean / episode_length
array_JSD_mean[idx] = JSD_mean
idx += 1
# Mean over all test files
mean_l1_final = np.mean(array_l1_final)
mean_l1_mean = np.mean(array_l1_mean)
mean_JSD_final = np.mean(array_JSD_final)
mean_JSD_mean = np.mean(array_JSD_mean)
with open(outfile, 'ab') as f:
np.savetxt(f, np.array(['theta = %f' % self.theta]), fmt='%s')
np.savetxt(f, np.array(['array_l1_final']), fmt='%s')
np.savetxt(f, np.array([mean_l1_final]), fmt='%.3e')
np.savetxt(f, array_l1_final.reshape(1, num_test_trajectories), delimiter=',', fmt='%.3e')
np.savetxt(f, np.array(['array_l1_mean']), fmt='%s')
np.savetxt(f, np.array([mean_l1_mean]), fmt='%.3e')
np.savetxt(f, array_l1_mean.reshape(1, num_test_trajectories), delimiter=',', fmt='%.3e')
np.savetxt(f, np.array(['array_JSD_final']), fmt='%s')
np.savetxt(f, np.array([mean_JSD_final]), fmt='%.3e')
np.savetxt(f, array_JSD_final.reshape(1, num_test_trajectories), delimiter=',', fmt='%.3e')
np.savetxt(f, np.array(['array_JSD_mean']), fmt='%s')
np.savetxt(f, np.array([mean_JSD_mean]), fmt='%.3e')
np.savetxt(f, array_JSD_mean.reshape(1, num_test_trajectories), delimiter=',', fmt='%.3e')
print("mat_trajectory\n", mat_trajectory)
print("array_l1_final\n", array_l1_final)
print("array_l1_mean\n", array_l1_mean)
print("array_JSD_final\n", array_JSD_final)
print("array_JSD_mean\n", array_JSD_mean)
def visualize(self, theta=8.86349, d=21, topic=0, dir_train='train_normalized', train_start=1, train_end=27, dir_test='test_normalized', test_start=27, test_end=38):
"""
Run MFG policy forward using initial distributions across both training and test set,
and plot trajectory of topic against all measurement data.
"""
self.theta = theta
self.d = d
# Read train and test data
df_train, df_test = self.var.read_data(dir_train, train_start, train_end, dir_test, test_start, test_end)
# Generate trajectory from train data using policy
print("Generating trajectory from train data")
list_df = []
idx = 0
for num_day in range(train_start, train_end):
# Read initial distribution pi0
pi0 = np.array(df_train.iloc[(num_day-1)*16])
# Generate entire trajectory using policy
mat_trajectory, array_actions = self.generate_trajectory(pi0, total_hours=16)
df = pd.DataFrame(mat_trajectory)
df.index = np.arange(idx, idx+16)
list_df.append(df)
idx += 16
self.df_train_generated = pd.concat(list_df)
self.df_train_generated.index = pd.to_datetime(self.df_train_generated.index, unit="D")
# Generate trajectory using policy on test data
print("Generating trajectory from test data")
list_df = []
for num_day in range(test_start, test_end):
# Read initial distribution
pi0 = np.array(df_test.iloc[(num_day-test_start)*16])
# Generate entire trajectory using policy
mat_trajectory, array_actions = self.generate_trajectory(pi0, total_hours=16)
df = pd.DataFrame(mat_trajectory)
df.index = np.arange(idx, idx+16) # use same idx that was incremented above
list_df.append(df)
idx += 16
self.df_test_generated = pd.concat(list_df)
self.df_test_generated.index = pd.to_datetime(self.df_test_generated.index, unit="D")
num_train = len(self.df_train_generated.index)
array_x_train = np.arange(num_train)
array_x_test = np.arange(num_train, num_train+len(self.df_test_generated.index))
plt.plot(array_x_train, df_train[topic], color='r', linestyle='-', label='train data')
plt.plot(array_x_train, self.df_train_generated[topic], color='b', linestyle='--', label='MFG (train)')
plt.plot(array_x_test, df_test[topic], color='k', linestyle='-', label='test data')
plt.plot(array_x_test, self.df_test_generated[topic], color='g', linestyle='--', label='MFG (test)')
plt.ylabel('Topic %d popularity' % topic)
plt.xlabel('Time steps (hrs)')
plt.legend(loc='best')
plt.title("Topic %d empirical and generated data" % topic)
plt.show()
def calc_reward_vector(self, P):
"""
Input:
P - transition matrix
Using r_i(pi, P_i) = -1/2 ||P_i||^2,
reward vector is v
where v is vector whose i-th element is -1/2 ||P_i||^2
"""
# v = -0.5 * np.power( norm(P, axis=1), 2 )
v = -0.5 * np.apply_along_axis(lambda row: np.power( norm(row, ord=2), 2), 1, P)
return v
def evaluate_synthetic(self, day_first=1, day_last=26, verbose=0):
"""
Evaluates how close P_{ij}^n is to
1. V_j^n - V_i^n , if i \neq j
2. - \sum_{j: j \neq i} (V_j^n - V_i^n) + 1 , if i == j
Argument:
day_first - first training file
day_last - last training file
verbose - obvious
Return:
diff_mean
diff_std
For each day, for each hour, sum up the
absolute difference between P_{ij} and the value
computed using the value function, over all i and all j
This gives an array of values, one value for each hour, for all hours and all days.
Report the mean and standard deviation of this array.
Requires self.theta to be set prior to running this.
"""
list_diff = []
# For each initial distribution, use policy to generate trajectory
# pi^0, P^0, pi^1, P^1,...pi^N
for day in range(day_first-1, day_last):
# Get initial distribution
pi = self.mat_pi0[day, :]
# Get sequence of distributions pi^n and actions P^n
mat_trajectory, array_actions = self.generate_trajectory(pi, total_hours=16)
# Use backward equation to get V^n_i for all n, for all i
# num_topic rows, 16 columns, each column is V^n for that hour
mat_V = np.zeros([self.d, 16])
# From 14 to 0, inclusive
for n in range(14,-1,-1):
vec_reward = self.calc_reward_vector( array_actions[n] )
# V^n = r + P * V^{n+1}
mat_V[: , n:n+1] = vec_reward.reshape(self.d, 1) + array_actions[n].dot( mat_V[:, n+1:n+2] )
# Go through all P matrices for this day,
# get sum of absolute difference between P_{ij} and the value computed
# using the value function, for all i for all j
for n in range(0,15):
diff = 0
for idx_i in range(0, self.d):
for idx_j in range(0, self.d):
P_ij = array_actions[n, idx_i, idx_j]
if idx_i == idx_j:
# (-\sum_{j: j != i} V_j - V_i) + 1
value = 1 - (np.sum(mat_V[:, n]) - self.d*mat_V[idx_i, n])
else:
# V_j - V_i
value = mat_V[idx_j, n] - mat_V[idx_i, n]
diff += abs(P_ij - value)
list_diff.append(diff)
diff_mean = np.mean(list_diff)
diff_std = np.std(list_diff)
if verbose:
print("Mean over all hours", diff_mean)
print("Standard deviation", diff_std)
print("P_01 at time 0 =", array_actions[0,0,1])
print("V_1 - V_0 at time 0 =", (mat_V[1,0] - mat_V[0,0]))
print("P_00 at time 0 =", array_actions[0,0,0])
print("value =", (1 - (np.sum(mat_V[:,0]) - mat_V[0,0] - (self.d-1)*mat_V[0,0])))
return diff_mean, diff_std
def evaluate_synthetic_JSD(self, day_first=1, day_last=26, write_file=0, filename='synthetic_log.csv', verbose=0):
"""
Evaluates how close P_i^n is to the row constructed from
1. V_j^n - V_i^n , if i \neq j
2. - \sum_{j: j \neq i} (V_j^n - V_i^n) + 1 , if i == j
Argument:
day_first - first training file
day_last - last training file
write_file - set to 1 to write file
filename - name of output file
verbose - obvious
Return:
diff_mean
diff_std
For each day, for each hour, sum up the
JSD between P_i and the value computed using the value function
over all i
This gives an array of values, one value for each hour, for all hours and all days.
Report the mean and standard deviation of this array.
Requires self.theta to be set prior to running this.
"""
list_diff = []
# For each initial distribution, use policy to generate trajectory
# pi^0, P^0, pi^1, P^1,...pi^N
for day in range(day_first-1, day_last):
# Get initial distribution
pi = self.mat_pi0[day, :]
# Get sequence of distributions pi^n and actions P^n
mat_trajectory, array_actions = self.generate_trajectory(pi, total_hours=16)
# Use backward equation to get V^n_i for all n, for all i
# num_topic rows, 16 columns, each column is V^n for that hour
mat_V = np.zeros([self.d, 16])
# From 14 to 0, inclusive
for n in range(14,-1,-1):
vec_reward = self.calc_reward_vector( array_actions[n] )
# V^n = r + P * V^{n+1}
mat_V[: , n:n+1] = vec_reward.reshape(self.d, 1) + array_actions[n].dot( mat_V[:, n+1:n+2] )
# Go through all P matrices for this day,
# get sum of JSD between P_i and the row computed
# using the value function, for all row i
for n in range(0,15):
diff = 0
# Go through all rows
for idx_i in range(0, self.d):
P_i = array_actions[n, idx_i]
# Compute the row for comparison
row_compare = np.zeros(self.d)
for idx_j in range(0, self.d):
if idx_i == idx_j:
# (-\sum_{j: j != i} V_j - V_i) + 1
row_compare[idx_j] = 1 - (np.sum(mat_V[:, n]) - self.d*mat_V[idx_i, n])
else:
# V_j - V_i
row_compare[idx_j] = mat_V[idx_j, n] - mat_V[idx_i, n]
diff += self.JSD(P_i, row_compare)
if write_file:
self.train_log(P_i, filename, "%.3e")
self.train_log(row_compare, filename, "%.3e")
self.train_log(np.array([0]), filename, "%d") # line seperator
# if diff == np.inf:
# break
list_diff.append(diff)
# print(P_i)
# print(row_compare)
# print(list_diff)
diff_mean = np.mean(list_diff)
diff_std = np.std(list_diff)
if verbose:
print("Mean over all hours", diff_mean)
print("Standard deviation", diff_std)
print("P_01 at time 0 =", array_actions[0,0,1])
print("V_1 - V_0 at time 0 =", (mat_V[1,0] - mat_V[0,0]))
print("P_00 at time 0 =", array_actions[0,0,0])
print("value =", (1 - (np.sum(mat_V[:,0]) - mat_V[0,0] - (self.d-1)*mat_V[0,0])))
return diff_mean, diff_std
if __name__ == "__main__":
# Try to find a good theta (current best is 2.6)
with open("synthetic.csv", 'a') as f:
f.write("Shift,theta_initial,theta_final,diff_mean,diff_std\n")
for shift in np.arange(0, 0.04, 0.02):
for theta_initial in np.arange(0, 5.0, 0.05):
print("Theta initial", theta_initial)
print("Shift", shift)
ac = actor_critic(theta=theta_initial, shift=shift, alpha_scale=10000, d=21)
#ac = actor_critic(theta=theta, shift=0, alpha_scale=10000, d=21)
try:
ac.train(num_episodes=1000, gamma=1, constant=1, lr_critic=0.1, lr_actor=0.001, consecutive=100, write_file=0)
except:
pass
print("Theta final is", ac.theta)
#ac.init_pi0('train_normalized')
try:
diff_mean, diff_std = ac.evaluate_synthetic_JSD(day_first=1, day_last=26)
except:
diff_mean = 900
diff_std = 900
with open("synthetic.csv", 'a') as f:
f.write("%.3f,%.3f,%.3f,%.3f,%.3f\n" % (shift, theta_initial, ac.theta, diff_mean, diff_std))